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To	Ruth



PREFACE

ALMOST	two	decades	ago,	when	I	wrote	the	preface	to	my	book	Causality
(2000),	I	made	a	rather	daring	remark	that	friends	advised	me	to	tone	down.
“Causality	has	undergone	a	major	 transformation,”	I	wrote,	“from	a	concept
shrouded	in	mystery	into	a	mathematical	object	with	well-defined	semantics
and	 well-founded	 logic.	 Paradoxes	 and	 controversies	 have	 been	 resolved,
slippery	 concepts	 have	 been	 explicated,	 and	 practical	 problems	 relying	 on
causal	 information	 that	 long	 were	 regarded	 as	 either	 metaphysical	 or
unmanageable	can	now	be	solved	using	elementary	mathematics.	Put	simply,
causality	has	been	mathematized.”

Reading	 this	 passage	 today,	 I	 feel	 I	was	 somewhat	 shortsighted.	What	 I
described	 as	 a	 “transformation”	 turned	 out	 to	 be	 a	 “revolution”	 that	 has
changed	the	thinking	in	many	of	the	sciences.	Many	now	call	 it	“the	Causal
Revolution,”	 and	 the	 excitement	 that	 it	 has	 generated	 in	 research	 circles	 is
spilling	over	to	education	and	applications.	I	believe	the	time	is	ripe	to	share	it
with	a	broader	audience.

This	book	strives	to	fulfill	a	three-pronged	mission:	first,	to	lay	before	you
in	nonmathematical	language	the	intellectual	content	of	the	Causal	Revolution
and	how	it	 is	affecting	our	lives	as	well	as	our	future;	second,	 to	share	with
you	 some	 of	 the	 heroic	 journeys,	 both	 successful	 and	 failed,	 that	 scientists
have	embarked	on	when	confronted	by	critical	cause-effect	questions.

Finally,	 returning	 the	 Causal	 Revolution	 to	 its	 womb	 in	 artificial
intelligence,	I	aim	to	describe	to	you	how	robots	can	be	constructed	that	learn
to	communicate	in	our	mother	tongue—the	language	of	cause	and	effect.	This
new	generation	of	robots	should	explain	to	us	why	things	happened,	why	they
responded	 the	 way	 they	 did,	 and	 why	 nature	 operates	 one	 way	 and	 not
another.	More	ambitiously,	they	should	also	teach	us	about	ourselves:	why	our
mind	clicks	the	way	it	does	and	what	it	means	to	think	rationally	about	cause
and	effect,	credit	and	regret,	intent	and	responsibility.



When	I	write	equations,	 I	have	a	very	clear	 idea	of	who	my	readers	are.
Not	so	when	I	write	for	the	general	public—an	entirely	new	adventure	for	me.
Strange,	 but	 this	 new	 experience	 has	 been	 one	 of	 the	 most	 rewarding
educational	 trips	 of	 my	 life.	 The	 need	 to	 shape	 ideas	 in	 your	 language,	 to
guess	 your	 background,	 your	 questions,	 and	 your	 reactions,	 did	 more	 to
sharpen	my	understanding	of	 causality	 than	all	 the	 equations	 I	have	written
prior	to	writing	this	book.

For	this	I	will	forever	be	grateful	to	you.	I	hope	you	are	as	excited	as	I	am
to	see	the	results.

Judea	Pearl

Los	Angeles,	October	2017



INTRODUCTION:	MIND	OVER	DATA

Every	science	that	has	thriven	has	thriven	upon	its	own	symbols.

—AUGUSTUS	DE	MORGAN	(1864)

THIS	 book	 tells	 the	 story	 of	 a	 science	 that	 has	 changed	 the	 way	 we
distinguish	 facts	 from	 fiction	 and	 yet	 has	 remained	 under	 the	 radar	 of	 the
general	 public.	The	 consequences	of	 the	new	 science	 are	 already	 impacting
crucial	 facets	 of	 our	 lives	 and	 have	 the	 potential	 to	 affect	 more,	 from	 the
development	 of	 new	 drugs	 to	 the	 control	 of	 economic	 policies,	 from
education	 and	 robotics	 to	 gun	 control	 and	 global	 warming.	 Remarkably,
despite	the	diversity	and	apparent	incommensurability	of	these	problem	areas,
the	 new	 science	 embraces	 them	 all	 under	 a	 unified	 framework	 that	 was
practically	nonexistent	two	decades	ago.

The	 new	 science	 does	 not	 have	 a	 fancy	 name:	 I	 call	 it	 simply	 “causal
inference,”	as	do	many	of	my	colleagues.	Nor	is	it	particularly	high-tech.	The
ideal	 technology	 that	 causal	 inference	 strives	 to	 emulate	 resides	within	 our
own	minds.	 Some	 tens	 of	 thousands	 of	 years	 ago,	 humans	 began	 to	 realize
that	certain	 things	cause	other	 things	and	 that	 tinkering	with	 the	 former	can
change	the	latter.	No	other	species	grasps	this,	certainly	not	to	the	extent	that
we	do.	From	this	discovery	came	organized	societies,	 then	 towns	and	cities,
and	eventually	the	science-	and	technology-based	civilization	we	enjoy	today.
All	because	we	asked	a	simple	question:	Why?

Causal	 inference	 is	 all	 about	 taking	 this	 question	 seriously.	 It	 posits	 that
the	human	brain	is	the	most	advanced	tool	ever	devised	for	managing	causes
and	 effects.	 Our	 brains	 store	 an	 incredible	 amount	 of	 causal	 knowledge
which,	supplemented	by	data,	we	could	harness	to	answer	some	of	the	most
pressing	questions	of	our	time.	More	ambitiously,	once	we	really	understand
the	 logic	behind	causal	 thinking,	we	could	emulate	 it	on	modern	computers
and	 create	 an	 “artificial	 scientist.”	 This	 smart	 robot	 would	 discover	 yet
unknown	 phenomena,	 find	 explanations	 to	 pending	 scientific	 dilemmas,
design	new	experiments,	and	continually	extract	more	causal	knowledge	from
the	environment.



But	before	we	can	venture	to	speculate	on	such	futuristic	developments,	it
is	 important	 to	understand	the	achievements	that	causal	 inference	has	tallied
thus	 far.	 We	 will	 explore	 the	 way	 that	 it	 has	 transformed	 the	 thinking	 of
scientists	 in	 almost	 every	 data-informed	 discipline	 and	 how	 it	 is	 about	 to
change	our	lives.

The	new	science	addresses	seemingly	straightforward	questions	like	these:

•	How	effective	is	a	given	treatment	in	preventing	a	disease?

•	 Did	 the	 new	 tax	 law	 cause	 our	 sales	 to	 go	 up,	 or	 was	 it	 our
advertising	campaign?

•	What	is	the	health-care	cost	attributable	to	obesity?

•	Can	hiring	records	prove	an	employer	is	guilty	of	a	policy	of	sex
discrimination?

•	I’m	about	to	quit	my	job.	Should	I?

These	 questions	 have	 in	 common	 a	 concern	 with	 cause-and-effect
relationships,	 recognizable	 through	 words	 such	 as	 “preventing,”	 “cause,”
“attributable	 to,”	 “policy,”	 and	 “should	 I.”	 Such	 words	 are	 common	 in
everyday	 language,	 and	 our	 society	 constantly	 demands	 answers	 to	 such
questions.	 Yet,	 until	 very	 recently,	 science	 gave	 us	 no	 means	 even	 to
articulate,	let	alone	answer,	them.

By	far	the	most	important	contribution	of	causal	inference	to	mankind	has
been	 to	 turn	 this	scientific	neglect	 into	a	 thing	of	 the	past.	The	new	science
has	spawned	a	simple	mathematical	language	to	articulate	causal	relationships
that	 we	 know	 as	 well	 as	 those	 we	 wish	 to	 find	 out	 about.	 The	 ability	 to
express	 this	 information	 in	 mathematical	 form	 has	 unleashed	 a	 wealth	 of
powerful	and	principled	methods	for	combining	our	knowledge	with	data	and
answering	causal	questions	like	the	five	above.

I	 have	 been	 lucky	 to	 be	 part	 of	 this	 scientific	 development	 for	 the	 past
quarter	century.	 I	have	watched	 its	progress	 take	shape	 in	students’	cubicles
and	 research	 laboratories,	 and	 I	 have	 heard	 its	 breakthroughs	 resonate	 in
somber	scientific	conferences,	far	from	the	limelight	of	public	attention.	Now,
as	 we	 enter	 the	 era	 of	 strong	 artificial	 intelligence	 (AI)	 and	many	 tout	 the
endless	 possibilities	 of	 Big	 Data	 and	 deep	 learning,	 I	 find	 it	 timely	 and
exciting	to	present	to	the	reader	some	of	the	most	adventurous	paths	that	the
new	 science	 is	 taking,	 how	 it	 impacts	 data	 science,	 and	 the	many	ways	 in
which	it	will	change	our	lives	in	the	twenty-first	century.



When	you	hear	me	describe	 these	achievements	as	a	“new	science,”	you
may	be	skeptical.	You	may	even	ask,	Why	wasn’t	this	done	a	long	time	ago?
Say	 when	 Virgil	 first	 proclaimed,	 “Lucky	 is	 he	 who	 has	 been	 able	 to
understand	 the	 causes	 of	 things”	 (29	BC).	Or	when	 the	 founders	 of	modern
statistics,	 Francis	Galton	 and	Karl	 Pearson,	 first	 discovered	 that	 population
data	can	 shed	 light	on	scientific	questions.	There	 is	a	 long	 tale	behind	 their
unfortunate	failure	to	embrace	causation	at	this	juncture,	which	the	historical
sections	 of	 this	 book	 will	 relate.	 But	 the	 most	 serious	 impediment,	 in	 my
opinion,	has	been	the	fundamental	gap	between	the	vocabulary	in	which	we
cast	causal	questions	and	the	traditional	vocabulary	in	which	we	communicate
scientific	theories.

To	appreciate	the	depth	of	this	gap,	imagine	the	difficulties	that	a	scientist
would	face	in	trying	to	express	some	obvious	causal	relationships—say,	that
the	 barometer	 reading	B	 tracks	 the	 atmospheric	 pressure	P.	 We	 can	 easily
write	down	this	relationship	in	an	equation	such	as	B	=	kP,	where	k	is	some
constant	of	proportionality.	The	rules	of	algebra	now	permit	us	to	rewrite	this
same	equation	in	a	wild	variety	of	forms,	for	example,	P	=	B/k,	k	=	B/P,	or
B–kP	=	 0.	They	 all	mean	 the	 same	 thing—that	 if	we	 know	 any	 two	of	 the
three	quantities,	the	third	is	determined.	None	of	the	letters	k,	B,	or	P	is	in	any
mathematical	way	privileged	over	any	of	the	others.	How	then	can	we	express
our	 strong	 conviction	 that	 it	 is	 the	 pressure	 that	 causes	 the	 barometer	 to
change	 and	not	 the	other	way	 around?	And	 if	we	 cannot	 express	 even	 this,
how	 can	we	 hope	 to	 express	 the	many	other	 causal	 convictions	 that	 do	 not
have	mathematical	 formulas,	 such	as	 that	 the	 rooster’s	 crow	does	not	 cause
the	sun	to	rise?

My	college	professors	could	not	do	 it	and	never	complained.	 I	would	be
willing	 to	 bet	 that	 none	 of	 yours	 ever	 did	 either.	We	 now	 understand	why:
never	 were	 they	 shown	 a	 mathematical	 language	 of	 causes;	 nor	 were	 they
shown	its	benefits.	It	is	in	fact	an	indictment	of	science	that	it	has	neglected	to
develop	 such	 a	 language	 for	 so	 many	 generations.	 Everyone	 knows	 that
flipping	 a	 switch	will	 cause	 a	 light	 to	 turn	 on	 or	 off	 and	 that	 a	 hot,	 sultry
summer	afternoon	will	cause	sales	to	go	up	at	the	local	ice-cream	parlor.	Why
then	have	scientists	not	captured	such	obvious	facts	in	formulas,	as	they	did
with	 the	 basic	 laws	 of	 optics,	 mechanics,	 or	 geometry?	 Why	 have	 they
allowed	 these	 facts	 to	 languish	 in	 bare	 intuition,	 deprived	 of	 mathematical
tools	that	have	enabled	other	branches	of	science	to	flourish	and	mature?

Part	of	the	answer	is	that	scientific	tools	are	developed	to	meet	scientific
needs.	Precisely	because	we	are	so	good	at	handling	questions	about	switches,
ice	 cream,	 and	 barometers,	 our	 need	 for	 special	mathematical	machinery	 to



handle	 them	was	 not	 obvious.	 But	 as	 scientific	 curiosity	 increased	 and	 we
began	 posing	 causal	 questions	 in	 complex	 legal,	 business,	 medical,	 and
policy-making	situations,	we	found	ourselves	lacking	the	tools	and	principles
that	mature	science	should	provide.

Belated	 awakenings	 of	 this	 sort	 are	 not	 uncommon	 in	 science.	 For
example,	until	 about	 four	hundred	years	 ago,	people	were	quite	happy	with
their	natural	ability	to	manage	the	uncertainties	in	daily	life,	from	crossing	a
street	 to	 risking	 a	 fistfight.	Only	 after	 gamblers	 invented	 intricate	 games	of
chance,	sometimes	carefully	designed	to	trick	us	into	making	bad	choices,	did
mathematicians	 like	 Blaise	 Pascal	 (1654),	 Pierre	 de	 Fermat	 (1654),	 and
Christiaan	Huygens	 (1657)	 find	 it	 necessary	 to	 develop	what	we	 today	 call
probability	 theory.	 Likewise,	 only	 when	 insurance	 organizations	 demanded
accurate	 estimates	 of	 life	 annuity	 did	 mathematicians	 like	 Edmond	 Halley
(1693)	 and	Abraham	de	Moivre	 (1725)	 begin	 looking	 at	mortality	 tables	 to
calculate	 life	 expectancies.	 Similarly,	 astronomers’	 demands	 for	 accurate
predictions	of	celestial	motion	led	Jacob	Bernoulli,	Pierre-Simon	Laplace,	and
Carl	Friedrich	Gauss	 to	develop	a	 theory	of	errors	 to	help	us	extract	signals
from	noise.	These	methods	were	all	predecessors	of	today’s	statistics.

Ironically,	the	need	for	a	theory	of	causation	began	to	surface	at	the	same
time	that	statistics	came	into	being.	In	fact,	modern	statistics	hatched	from	the
causal	 questions	 that	 Galton	 and	 Pearson	 asked	 about	 heredity	 and	 their
ingenious	 attempts	 to	 answer	 them	 using	 cross-generational	 data.
Unfortunately,	they	failed	in	this	endeavor,	and	rather	than	pause	to	ask	why,
they	declared	 those	questions	off	 limits	and	 turned	 to	developing	a	 thriving,
causality-free	enterprise	called	statistics.

This	was	a	critical	moment	 in	 the	history	of	 science.	The	opportunity	 to
equip	causal	questions	with	a	language	of	their	own	came	very	close	to	being
realized	 but	 was	 squandered.	 In	 the	 following	 years,	 these	 questions	 were
declared	 unscientific	 and	 went	 underground.	 Despite	 heroic	 efforts	 by	 the
geneticist	 Sewall	 Wright	 (1889–1988),	 causal	 vocabulary	 was	 virtually
prohibited	for	more	than	half	a	century.	And	when	you	prohibit	speech,	you
prohibit	thought	and	stifle	principles,	methods,	and	tools.

Readers	 do	 not	 have	 to	 be	 scientists	 to	 witness	 this	 prohibition.	 In
Statistics	 101,	 every	 student	 learns	 to	 chant,	 “Correlation	 is	 not	 causation.”
With	good	 reason!	The	 rooster’s	 crow	 is	highly	 correlated	with	 the	 sunrise;
yet	it	does	not	cause	the	sunrise.

Unfortunately,	 statistics	 has	 fetishized	 this	 commonsense	 observation.	 It
tells	us	that	correlation	is	not	causation,	but	it	does	not	tell	us	what	causation



is.	 In	vain	will	you	 search	 the	 index	of	a	 statistics	 textbook	 for	an	entry	on
“cause.”	Students	are	not	allowed	to	say	that	X	is	the	cause	of	Y—only	that	X
and	Y	are	“related”	or	“associated.”

Because	 of	 this	 prohibition,	 mathematical	 tools	 to	 manage	 causal
questions	 were	 deemed	 unnecessary,	 and	 statistics	 focused	 exclusively	 on
how	to	summarize	data,	not	on	how	to	 interpret	 it.	A	shining	exception	was
path	analysis,	invented	by	geneticist	Sewall	Wright	in	the	1920s	and	a	direct
ancestor	of	the	methods	we	will	entertain	in	this	book.	However,	path	analysis
was	 badly	 underappreciated	 in	 statistics	 and	 its	 satellite	 communities	 and
languished	 for	 decades	 in	 its	 embryonic	 status.	What	 should	 have	 been	 the
first	step	toward	causal	inference	remained	the	only	step	until	the	1980s.	The
rest	of	statistics,	including	the	many	disciplines	that	looked	to	it	for	guidance,
remained	 in	 the	 Prohibition	 era,	 falsely	 believing	 that	 the	 answers	 to	 all
scientific	 questions	 reside	 in	 the	 data,	 to	 be	 unveiled	 through	 clever	 data-
mining	tricks.

Much	of	 this	data-centric	history	 still	haunts	us	 today.	We	 live	 in	an	era
that	 presumes	 Big	 Data	 to	 be	 the	 solution	 to	 all	 our	 problems.	 Courses	 in
“data	 science”	 are	 proliferating	 in	 our	 universities,	 and	 jobs	 for	 “data
scientists”	 are	 lucrative	 in	 the	 companies	 that	 participate	 in	 the	 “data
economy.”	But	I	hope	with	this	book	to	convince	you	that	data	are	profoundly
dumb.	Data	can	tell	you	that	the	people	who	took	a	medicine	recovered	faster
than	those	who	did	not	take	it,	but	they	can’t	tell	you	why.	Maybe	those	who
took	 the	 medicine	 did	 so	 because	 they	 could	 afford	 it	 and	 would	 have
recovered	just	as	fast	without	it.

Over	and	over	again,	 in	science	and	in	business,	we	see	situations	where
mere	data	aren’t	enough.	Most	big-data	enthusiasts,	while	somewhat	aware	of
these	 limitations,	 continue	 the	 chase	 after	 data-centric	 intelligence,	 as	 if	we
were	still	in	the	Prohibition	era.

As	I	mentioned	earlier,	things	have	changed	dramatically	in	the	past	three
decades.	Nowadays,	thanks	to	carefully	crafted	causal	models,	contemporary
scientists	 can	 address	 problems	 that	 would	 have	 once	 been	 considered
unsolvable	or	even	beyond	the	pale	of	scientific	inquiry.	For	example,	only	a
hundred	years	ago,	the	question	of	whether	cigarette	smoking	causes	a	health
hazard	 would	 have	 been	 considered	 unscientific.	 The	 mere	 mention	 of	 the
words	“cause”	or	“effect”	would	create	a	storm	of	objections	in	any	reputable
statistical	journal.

Even	 two	 decades	 ago,	 asking	 a	 statistician	 a	 question	 like	 “Was	 it	 the
aspirin	 that	 stopped	 my	 headache?”	 would	 have	 been	 like	 asking	 if	 he



believed	 in	 voodoo.	 To	 quote	 an	 esteemed	 colleague	 of	 mine,	 it	 would	 be
“more	of	 a	 cocktail	 conversation	 topic	 than	 a	 scientific	 inquiry.”	But	 today,
epidemiologists,	 social	 scientists,	 computer	 scientists,	 and	 at	 least	 some
enlightened	 economists	 and	 statisticians	 pose	 such	 questions	 routinely	 and
answer	them	with	mathematical	precision.	To	me,	this	change	is	nothing	short
of	 a	 revolution.	 I	 dare	 to	 call	 it	 the	Causal	Revolution,	 a	 scientific	 shakeup
that	 embraces	 rather	 than	 denies	 our	 innate	 cognitive	 gift	 of	 understanding
cause	and	effect.

The	Causal	Revolution	did	not	happen	in	a	vacuum;	it	has	a	mathematical
secret	behind	it	which	can	be	best	described	as	a	calculus	of	causation,	which
answers	 some	 of	 the	 hardest	 problems	 ever	 asked	 about	 cause-effect
relationships.	 I	 am	 thrilled	 to	 unveil	 this	 calculus	 not	 only	 because	 the
turbulent	 history	 of	 its	 development	 is	 intriguing	 but	 even	 more	 because	 I
expect	 that	 its	 full	 potential	 will	 be	 developed	 one	 day	 beyond	what	 I	 can
imagine…	perhaps	even	by	a	reader	of	this	book.

The	calculus	of	causation	consists	of	 two	 languages:	causal	diagrams,	 to
express	 what	 we	 know,	 and	 a	 symbolic	 language,	 resembling	 algebra,	 to
express	 what	 we	 want	 to	 know.	 The	 causal	 diagrams	 are	 simply	 dot-and-
arrow	 pictures	 that	 summarize	 our	 existing	 scientific	 knowledge.	 The	 dots
represent	 quantities	 of	 interest,	 called	 “variables,”	 and	 the	 arrows	 represent
known	 or	 suspected	 causal	 relationships	 between	 those	 variables—namely,
which	variable	“listens”	to	which	others.	These	diagrams	are	extremely	easy
to	draw,	comprehend,	and	use,	and	the	reader	will	find	dozens	of	them	in	the
pages	of	this	book.	If	you	can	navigate	using	a	map	of	one-way	streets,	then
you	can	understand	causal	diagrams,	and	you	can	solve	the	type	of	questions
posed	at	the	beginning	of	this	introduction.

Though	causal	diagrams	are	my	tool	of	choice	in	this	book,	as	in	the	last
thirty-five	years	of	my	research,	 they	are	not	 the	only	kind	of	causal	model
possible.	 Some	 scientists	 (e.g.,	 econometricians)	 like	 to	 work	 with
mathematical	 equations;	 others	 (e.g.,	 hard-core	 statisticians)	 prefer	 a	 list	 of
assumptions	 that	 ostensibly	 summarizes	 the	 structure	 of	 the	 diagram.
Regardless	of	 language,	 the	model	 should	depict,	 however	qualitatively,	 the
process	 that	generates	 the	data—in	other	words,	 the	cause-effect	 forces	 that
operate	in	the	environment	and	shape	the	data	generated.

Side	 by	 side	 with	 this	 diagrammatic	 “language	 of	 knowledge,”	 we	 also
have	 a	 symbolic	 “language	 of	 queries”	 to	 express	 the	 questions	 we	 want
answers	 to.	For	example,	 if	we	are	 interested	 in	 the	effect	of	a	drug	 (D)	on
lifespan	(L),	then	our	query	might	be	written	symbolically	as:	P(L	|	do(D)).	In



other	words,	what	is	the	probability	(P)	that	a	typical	patient	would	survive	L
years	if	made	to	take	the	drug?	This	question	describes	what	epidemiologists
would	call	an	intervention	or	a	treatment	and	corresponds	to	what	we	measure
in	a	clinical	 trial.	 In	many	cases	we	may	also	wish	to	compare	P(L	 |	do(D))
with	 P(L	 |	 do(not-D));	 the	 latter	 describes	 patients	 denied	 treatment,	 also
called	 the	 “control”	 patients.	 The	 do-operator	 signifies	 that	 we	 are	 dealing
with	an	intervention	rather	than	a	passive	observation;	classical	statistics	has
nothing	remotely	similar	to	this	operator.

We	must	invoke	an	intervention	operator	do(D)	to	ensure	that	the	observed
change	in	Lifespan	L	is	due	to	the	drug	itself	and	is	not	confounded	with	other
factors	that	tend	to	shorten	or	lengthen	life.	If,	instead	of	intervening,	we	let
the	patient	himself	decide	whether	to	take	the	drug,	those	other	factors	might
influence	his	decision,	and	lifespan	differences	between	taking	and	not	taking
the	 drug	would	 no	 longer	 be	 solely	 due	 to	 the	 drug.	 For	 example,	 suppose
only	those	who	were	terminally	ill	took	the	drug.	Such	persons	would	surely
differ	 from	 those	who	 did	 not	 take	 the	 drug,	 and	 a	 comparison	 of	 the	 two
groups	would	reflect	differences	in	the	severity	of	their	disease	rather	than	the
effect	of	the	drug.	By	contrast,	forcing	patients	to	take	or	refrain	from	taking
the	 drug,	 regardless	 of	 preconditions,	 would	 wash	 away	 preexisting
differences	and	provide	a	valid	comparison.

Mathematically,	 we	 write	 the	 observed	 frequency	 of	 Lifespan	 L	 among
patients	 who	 voluntarily	 take	 the	 drug	 as	 P(L	 |	D),	 which	 is	 the	 standard
conditional	 probability	 used	 in	 statistical	 textbooks.	 This	 expression	 stands
for	 the	 probability	 (P)	 of	 Lifespan	L	 conditional	 on	 seeing	 the	 patient	 take
Drug	D.	Note	that	P(L	 |	D)	may	be	 totally	different	 from	P(L	 |	do(D)).	This
difference	between	seeing	and	doing	is	fundamental	and	explains	why	we	do
not	regard	the	falling	barometer	to	be	a	cause	of	the	coming	storm.	Seeing	the
barometer	 fall	 increases	 the	probability	of	 the	storm,	while	 forcing	 it	 to	 fall
does	not	affect	this	probability.

This	 confusion	 between	 seeing	 and	 doing	 has	 resulted	 in	 a	 fountain	 of
paradoxes,	some	of	which	we	will	entertain	in	this	book.	A	world	devoid	of
P(L	|	do(D))	and	governed	solely	by	P(L	|	D)	would	be	a	strange	one	indeed.
For	 example,	 patients	 would	 avoid	 going	 to	 the	 doctor	 to	 reduce	 the
probability	 of	 being	 seriously	 ill;	 cities	 would	 dismiss	 their	 firefighters	 to
reduce	the	incidence	of	fires;	doctors	would	recommend	a	drug	to	male	and
female	patients	but	not	 to	patients	with	undisclosed	gender;	 and	so	on.	 It	 is
hard	to	believe	that	less	than	three	decades	ago	science	did	operate	in	such	a
world:	the	do-operator	did	not	exist.



One	of	 the	crowning	achievements	of	 the	Causal	Revolution	has	been	 to
explain	how	to	predict	the	effects	of	an	intervention	without	actually	enacting
it.	It	would	never	have	been	possible	if	we	had	not,	first	of	all,	defined	the	do-
operator	so	that	we	can	ask	the	right	question	and,	second,	devised	a	way	to
emulate	it	by	noninvasive	means.

When	the	scientific	question	of	interest	involves	retrospective	thinking,	we
call	 on	 another	 type	 of	 expression	 unique	 to	 causal	 reasoning	 called	 a
counterfactual.	For	example,	suppose	that	Joe	took	Drug	D	and	died	a	month
later;	our	question	of	interest	is	whether	the	drug	might	have	caused	his	death.
To	 answer	 this	 question,	 we	 need	 to	 imagine	 a	 scenario	 in	 which	 Joe	 was
about	to	take	the	drug	but	changed	his	mind.	Would	he	have	lived?

Again,	 classical	 statistics	 only	 summarizes	 data,	 so	 it	 does	 not	 provide
even	a	language	for	asking	that	question.	Causal	inference	provides	a	notation
and,	 more	 importantly,	 offers	 a	 solution.	 As	 with	 predicting	 the	 effect	 of
interventions	 (mentioned	 above),	 in	 many	 cases	 we	 can	 emulate	 human
retrospective	 thinking	with	an	algorithm	that	 takes	what	we	know	about	 the
observed	world	and	produces	an	answer	about	the	counterfactual	world.	This
“algorithmization	of	counterfactuals”	is	another	gem	uncovered	by	the	Causal
Revolution.

Counterfactual	 reasoning,	 which	 deals	 with	 what-ifs,	 might	 strike	 some
readers	 as	 unscientific.	 Indeed,	 empirical	 observation	 can	 never	 confirm	 or
refute	 the	answers	 to	 such	questions.	Yet	our	minds	make	very	 reliable	 and
reproducible	judgments	all	the	time	about	what	might	be	or	might	have	been.
We	all	understand,	for	instance,	that	had	the	rooster	been	silent	this	morning,
the	sun	would	have	risen	just	as	well.	This	consensus	stems	from	the	fact	that
counterfactuals	 are	not	 products	 of	whimsy	but	 reflect	 the	very	 structure	of
our	 world	 model.	 Two	 people	 who	 share	 the	 same	 causal	 model	 will	 also
share	all	counterfactual	judgments.

Counterfactuals	 are	 the	 building	 blocks	 of	 moral	 behavior	 as	 well	 as
scientific	 thought.	 The	 ability	 to	 reflect	 on	 one’s	 past	 actions	 and	 envision
alternative	 scenarios	 is	 the	 basis	 of	 free	 will	 and	 social	 responsibility.	 The
algorithmization	of	counterfactuals	invites	thinking	machines	to	benefit	from
this	ability	and	participate	in	this	(until	now)	uniquely	human	way	of	thinking
about	the	world.

My	mention	 of	 thinking	machines	 in	 the	 last	 paragraph	 is	 intentional.	 I
came	 to	 this	 subject	as	a	computer	 scientist	working	 in	 the	area	of	artificial
intelligence,	 which	 entails	 two	 points	 of	 departure	 from	 most	 of	 my
colleagues	in	the	causal	inference	arena.	First,	in	the	world	of	AI,	you	do	not



really	understand	a	topic	until	you	can	teach	it	to	a	mechanical	robot.	That	is
why	 you	 will	 find	 me	 emphasizing	 and	 reemphasizing	 notation,	 language,
vocabulary,	and	grammar.	For	example,	I	obsess	over	whether	we	can	express
a	 certain	 claim	 in	 a	 given	 language	 and	 whether	 one	 claim	 follows	 from
others.	 It	 is	 amazing	 how	 much	 one	 can	 learn	 from	 just	 following	 the
grammar	of	scientific	utterances.	My	emphasis	on	language	also	comes	from
a	 deep	 conviction	 that	 language	 shapes	 our	 thoughts.	You	 cannot	 answer	 a
question	that	you	cannot	ask,	and	you	cannot	ask	a	question	that	you	have	no
words	for.	As	a	student	of	philosophy	and	computer	science,	my	attraction	to
causal	 inference	 has	 largely	 been	 triggered	 by	 the	 excitement	 of	 seeing	 an
orphaned	scientific	language	making	it	from	birth	to	maturity.

My	background	 in	machine	 learning	has	 given	me	yet	 another	 incentive
for	 studying	 causation.	 In	 the	 late	 1980s,	 I	 realized	 that	 machines’	 lack	 of
understanding	of	causal	relations	was	perhaps	the	biggest	roadblock	to	giving
them	human-level	intelligence.	In	the	last	chapter	of	this	book,	I	will	return	to
my	 roots,	 and	 together	 we	 will	 explore	 the	 implications	 of	 the	 Causal
Revolution	for	artificial	intelligence.	I	believe	that	strong	AI	is	an	achievable
goal	 and	 one	 not	 to	 be	 feared	 precisely	 because	 causality	 is	 part	 of	 the
solution.	A	causal	reasoning	module	will	give	machines	the	ability	to	reflect
on	 their	 mistakes,	 to	 pinpoint	 weaknesses	 in	 their	 software,	 to	 function	 as
moral	entities,	and	to	converse	naturally	with	humans	about	their	own	choices
and	intentions.

A	BLUEPRINT	OF	REALITY

In	 our	 era,	 readers	 have	 no	 doubt	 heard	 terms	 like	 “knowledge,”
“information,”	“intelligence,”	and	“data,”	and	some	may	feel	confused	about
the	 differences	 between	 them	or	 how	 they	 interact.	Now	 I	 am	proposing	 to
throw	 another	 term,	 “causal	 model,”	 into	 the	 mix,	 and	 the	 reader	 may
justifiably	wonder	if	this	will	only	add	to	the	confusion.

It	 will	 not!	 In	 fact,	 it	 will	 anchor	 the	 elusive	 notions	 of	 science,
knowledge,	and	data	in	a	concrete	and	meaningful	setting,	and	will	enable	us
to	see	how	the	 three	work	 together	 to	produce	answers	 to	difficult	scientific
questions.	 Figure	 I.1	 shows	 a	 blueprint	 for	 a	 “causal	 inference	 engine”	 that
might	handle	causal	reasoning	for	a	future	artificial	intelligence.	It’s	important
to	realize	that	this	is	not	only	a	blueprint	for	the	future	but	also	a	guide	to	how
causal	models	work	in	scientific	applications	today	and	how	they	interact	with
data.



The	 inference	 engine	 is	 a	 machine	 that	 accepts	 three	 different	 kinds	 of
inputs—Assumptions,	 Queries,	 and	 Data—and	 produces	 three	 kinds	 of
outputs.	The	first	of	the	outputs	is	a	Yes/No	decision	as	to	whether	the	given
query	can	 in	 theory	be	answered	under	 the	existing	causal	model,	 assuming
perfect	 and	 unlimited	 data.	 If	 the	 answer	 is	 Yes,	 the	 inference	 engine	 next
produces	an	Estimand.	This	is	a	mathematical	formula	that	can	be	thought	of
as	 a	 recipe	 for	generating	 the	 answer	 from	any	hypothetical	data,	whenever
they	 are	 available.	 Finally,	 after	 the	 inference	 engine	 has	 received	 the	Data
input,	 it	 will	 use	 the	 recipe	 to	 produce	 an	 actual	 Estimate	 for	 the	 answer,
along	with	statistical	estimates	of	the	amount	of	uncertainty	in	that	estimate.
This	 uncertainty	 reflects	 the	 limited	 size	 of	 the	 data	 set	 as	well	 as	 possible
measurement	errors	or	missing	data.

FIGURE	I.	How	an	“inference	engine”	combines	data	with	causal	knowledge	to

produce	answers	to	queries	of	interest.	The	dashed	box	is	not	part	of	the	engine	but
is	required	for	building	it.	Arrows	could	also	be	drawn	from	boxes	4	and	9	to	box

1,	but	I	have	opted	to	keep	the	diagram	simple.

To	dig	more	deeply	 into	 the	chart,	 I	have	 labeled	 the	boxes	1	 through	9,
which	I	will	annotate	in	the	context	of	the	query	“What	is	the	effect	of	Drug	D
on	Lifespan	L?”

1.	 “Knowledge”	 stands	 for	 traces	 of	 experience	 the	 reasoning
agent	 has	 had	 in	 the	 past,	 including	 past	 observations,	 past
actions,	education,	and	cultural	mores,	that	are	deemed	relevant
to	 the	 query	 of	 interest.	 The	 dotted	 box	 around	 “Knowledge”
indicates	that	it	remains	implicit	in	the	mind	of	the	agent	and	is
not	explicated	formally	in	the	model.

2.	 Scientific	 research	 always	 requires	 simplifying	 assumptions,



that	 is,	 statements	 which	 the	 researcher	 deems	 worthy	 of
making	explicit	on	the	basis	of	the	available	Knowledge.	While
most	 of	 the	 researcher’s	 knowledge	 remains	 implicit	 in	 his	 or
her	 brain,	 only	 Assumptions	 see	 the	 light	 of	 day	 and	 are
encapsulated	 in	 the	model.	They	 can	 in	 fact	 be	 read	 from	 the
model,	which	has	led	some	logicians	to	conclude	that	a	model
is	nothing	more	than	a	list	of	assumptions.	Computer	scientists
take	 exception	 to	 this	 claim,	 noting	 that	 how	 assumptions	 are
represented	can	make	a	profound	difference	 in	one’s	ability	 to
specify	 them	correctly,	draw	conclusions	from	them,	and	even
extend	or	modify	them	in	light	of	compelling	evidence.

3.	 Various	 options	 exist	 for	 causal	 models:	 causal	 diagrams,
structural	 equations,	 logical	 statements,	 and	 so	 forth.	 I	 am
strongly	 sold	 on	 causal	 diagrams	 for	 nearly	 all	 applications,
primarily	due	to	their	 transparency	but	also	due	to	the	explicit
answers	they	provide	to	many	of	the	questions	we	wish	to	ask.
For	 the	 purpose	 of	 constructing	 the	 diagram,	 the	 definition	of
“causation”	is	simple,	if	a	little	metaphorical:	a	variable	X	is	a
cause	 of	 Y	 if	 Y	 “listens”	 to	 X	 and	 determines	 its	 value	 in
response	 to	 what	 it	 hears.	 For	 example,	 if	 we	 suspect	 that	 a
patient’s	 Lifespan	 L	 “listens”	 to	 whether	 Drug	D	 was	 taken,
then	we	call	D	a	cause	of	L	and	draw	an	arrow	from	D	to	L	in	a
causal	diagram.	Naturally,	the	answer	to	our	query	about	D	and
L	is	likely	to	depend	on	other	variables	as	well,	which	must	also
be	 represented	 in	 the	 diagram	 along	 with	 their	 causes	 and
effects.	(Here,	we	will	denote	them	collectively	by	Z.)

4.	 The	 listening	 pattern	 prescribed	 by	 the	 paths	 of	 the	 causal
model	usually	results	in	observable	patterns	or	dependencies	in
the	 data.	 These	 patterns	 are	 called	 “testable	 implications”
because	 they	 can	 be	 used	 for	 testing	 the	 model.	 These	 are
statements	 like	“There	 is	no	path	connecting	D	and	L,”	which
translates	to	a	statistical	statement,	“D	and	L	are	independent,”
that	is,	finding	D	does	not	change	the	likelihood	of	L.	If	the	data
contradict	 this	 implication,	 then	we	need	 to	 revise	our	model.
Such	revisions	require	another	engine,	which	obtains	its	inputs
from	boxes	4	and	7	and	computes	the	“degree	of	fitness,”	that



is,	 the	 degree	 to	 which	 the	 Data	 are	 compatible	 with	 the
model’s	assumptions.	For	simplicity,	I	did	not	show	this	second
engine	in	Figure	I.1.

5.	 Queries	 submitted	 to	 the	 inference	 engine	 are	 the	 scientific
questions	that	we	want	to	answer.	They	must	be	formulated	in
causal	vocabulary.	For	example,	what	 is	P(L	 |	do(D))?	One	of
the	main	accomplishments	of	the	Causal	Revolution	has	been	to
make	 this	 language	 scientifically	 transparent	 as	 well	 as
mathematically	rigorous.

6.	 “Estimand”	 comes	 from	 Latin,	 meaning	 “that	 which	 is	 to	 be
estimated.”	This	is	a	statistical	quantity	to	be	estimated	from	the
data	that,	once	estimated,	can	legitimately	represent	the	answer
to	 our	 query.	 While	 written	 as	 a	 probability	 formula—for
example,	P(L	|	D,	Z)	×	P(Z)—it	is	in	fact	a	recipe	for	answering
the	causal	query	from	the	type	of	data	we	have,	once	it	has	been
certified	by	the	engine.

It’s	very	important	to	realize	that,	contrary	to	traditional
estimation	in	statistics,	some	queries	may	not	be	answerable
under	the	current	causal	model,	even	after	the	collection	of	any
amount	of	data.	For	example,	if	our	model	shows	that	both	D
and	L	depend	on	a	third	variable	Z	(say,	the	stage	of	a	disease),
and	if	we	do	not	have	any	way	to	measure	Z,	then	the	query	P(L
|	do(D))	cannot	be	answered.	In	that	case	it	is	a	waste	of	time	to
collect	data.	Instead	we	need	to	go	back	and	refine	the	model,
either	by	adding	new	scientific	knowledge	that	might	allow	us
to	estimate	Z	or	by	making	simplifying	assumptions	(at	the	risk
of	being	wrong)—for	example,	that	the	effect	of	Z	on	D	is
negligible.

7.	Data	are	 the	 ingredients	 that	go	 into	 the	estimand	 recipe.	 It	 is
critical	 to	 realize	 that	 data	 are	 profoundly	 dumb	 about	 causal
relationships.	They	tell	us	about	quantities	like	P(L	|	D)	or	P(L	|
D,	Z).	It	is	the	job	of	the	estimand	to	tell	us	how	to	bake	these
statistical	 quantities	 into	 one	 expression	 that,	 based	 on	 the
model	assumptions,	 is	 logically	equivalent	 to	 the	causal	query
—say,	P(L	|	do(D)).

Notice	that	the	whole	notion	of	estimands	and	in	fact	the



whole	top	part	of	Figure	I	does	not	exist	in	traditional	methods
of	statistical	analysis.	There,	the	estimand	and	the	query
coincide.	For	example,	if	we	are	interested	in	the	proportion	of
people	among	those	with	Lifespan	L	who	took	the	Drug	D,	we
simply	write	this	query	as	P(D	|	L).	The	same	quantity	would	be
our	estimand.	This	already	specifies	what	proportions	in	the
data	need	to	be	estimated	and	requires	no	causal	knowledge.
For	this	reason,	some	statisticians	to	this	day	find	it	extremely
hard	to	understand	why	some	knowledge	lies	outside	the
province	of	statistics	and	why	data	alone	cannot	make	up	for
lack	of	scientific	knowledge.

8.	The	estimate	is	what	comes	out	of	the	oven.	However,	it	is	only
approximate	 because	 of	 one	 other	 real-world	 fact	 about	 data:
they	are	always	only	a	finite	sample	from	a	theoretically	infinite
population.	In	our	running	example,	the	sample	consists	of	the
patients	we	choose	to	study.	Even	if	we	choose	them	at	random,
there	 is	 always	 some	chance	 that	 the	proportions	measured	 in
the	 sample	 are	 not	 representative	 of	 the	 proportions	 in	 the
population	 at	 large.	 Fortunately,	 the	 discipline	 of	 statistics,
empowered	by	advanced	techniques	of	machine	learning,	gives
us	 many,	 many	 ways	 to	 manage	 this	 uncertainty—maximum
likelihood	 estimators,	 propensity	 scores,	 confidence	 intervals,
significance	tests,	and	so	forth.

9.	In	the	end,	if	our	model	is	correct	and	our	data	are	sufficient,	we
get	 an	answer	 to	our	 causal	query,	 such	as	“Drug	D	 increases
the	 Lifespan	 L	 of	 diabetic	 Patients	 Z	 by	 30	 percent,	 plus	 or
minus	 20	 percent.”	 Hooray!	 The	 answer	 will	 also	 add	 to	 our
scientific	knowledge	(box	1)	and,	if	 things	did	not	go	the	way
we	expected,	might	 suggest	 some	 improvements	 to	our	causal
model	(box	3).

This	 flowchart	 may	 look	 complicated	 at	 first,	 and	 you	 might	 wonder
whether	it	is	really	necessary.	Indeed,	in	our	ordinary	lives,	we	are	somehow
able	 to	 make	 causal	 judgments	 without	 consciously	 going	 through	 such	 a
complicated	 process	 and	 certainly	 without	 resorting	 to	 the	 mathematics	 of
probabilities	and	proportions.	Our	causal	 intuition	alone	 is	usually	sufficient
for	handling	the	kind	of	uncertainty	we	find	in	household	routines	or	even	in
our	professional	lives.	But	if	we	want	to	teach	a	dumb	robot	to	think	causally,



or	 if	we	are	pushing	 the	 frontiers	of	 scientific	knowledge,	where	we	do	not
have	 intuition	 to	 guide	 us,	 then	 a	 carefully	 structured	 procedure	 like	 this	 is
mandatory.

I	especially	want	to	highlight	the	role	of	data	in	the	above	process.	First,
notice	that	we	collect	data	only	after	we	posit	the	causal	model,	after	we	state
the	scientific	query	we	wish	to	answer,	and	after	we	derive	the	estimand.	This
contrasts	 with	 the	 traditional	 statistical	 approach,	 mentioned	 above,	 which
does	not	even	have	a	causal	model.

But	 our	 present-day	 scientific	 world	 presents	 a	 new	 challenge	 to	 sound
reasoning	about	causes	and	effects.	While	awareness	of	the	need	for	a	causal
model	has	grown	by	leaps	and	bounds	among	the	sciences,	many	researchers
in	 artificial	 intelligence	would	 like	 to	 skip	 the	 hard	 step	 of	 constructing	 or
acquiring	a	causal	model	and	rely	solely	on	data	for	all	cognitive	tasks.	The
hope—and	at	 present,	 it	 is	 usually	 a	 silent	 one—is	 that	 the	data	 themselves
will	guide	us	to	the	right	answers	whenever	causal	questions	come	up.

I	am	an	outspoken	skeptic	of	 this	 trend	because	 I	know	how	profoundly
dumb	data	are	about	causes	and	effects.	For	example,	 information	about	 the
effects	of	actions	or	interventions	is	simply	not	available	in	raw	data,	unless	it
is	collected	by	controlled	experimental	manipulation.	By	contrast,	if	we	are	in
possession	 of	 a	 causal	 model,	 we	 can	 often	 predict	 the	 result	 of	 an
intervention	from	hands-off,	intervention-free	data.

The	case	for	causal	models	becomes	even	more	compelling	when	we	seek
to	answer	counterfactual	queries	such	as	“What	would	have	happened	had	we
acted	 differently?”	 We	 will	 discuss	 counterfactuals	 in	 great	 detail	 because
they	are	the	most	challenging	queries	for	any	artificial	intelligence.	They	are
also	 at	 the	 core	 of	 the	 cognitive	 advances	 that	 made	 us	 human	 and	 the
imaginative	 abilities	 that	 have	made	 science	 possible.	We	will	 also	 explain
why	any	query	about	the	mechanism	by	which	causes	transmit	their	effects—
the	most	prototypical	“Why?”	question—is	actually	a	counterfactual	question
in	disguise.	Thus,	if	we	ever	want	robots	to	answer	“Why?”	questions	or	even
understand	what	 they	mean,	we	must	 equip	 them	with	 a	 causal	model	 and
teach	them	how	to	answer	counterfactual	queries,	as	in	Figure	I.1.

Another	advantage	causal	models	have	that	data	mining	and	deep	learning
lack	is	adaptability.	Note	that	in	Figure	I.1,	the	estimand	is	computed	on	the
basis	of	the	causal	model	alone,	prior	to	an	examination	of	the	specifics	of	the
data.	 This	makes	 the	 causal	 inference	 engine	 supremely	 adaptable,	 because
the	 estimand	 computed	 is	 good	 for	 any	 data	 that	 are	 compatible	 with	 the
qualitative	 model,	 regardless	 of	 the	 numerical	 relationships	 among	 the



variables.

To	 see	 why	 this	 adaptability	 is	 important,	 compare	 this	 engine	 with	 a
learning	agent—in	this	instance	a	human,	but	in	other	cases	perhaps	a	deep-
learning	 algorithm	 or	 maybe	 a	 human	 using	 a	 deep-learning	 algorithm—
trying	 to	 learn	 solely	 from	 the	 data.	 By	 observing	 the	 outcome	L	 of	many
patients	given	Drug	D,	she	is	able	to	predict	the	probability	that	a	patient	with
characteristics	Z	 will	 survive	L	 years.	Now	 she	 is	 transferred	 to	 a	 different
hospital,	in	a	different	part	of	town,	where	the	population	characteristics	(diet,
hygiene,	work	habits)	are	different.	Even	if	 these	new	characteristics	merely
modify	 the	 numerical	 relationships	 among	 the	 variables	 recorded,	 she	 will
still	have	to	retrain	herself	and	learn	a	new	prediction	function	all	over	again.
That’s	all	that	a	deep-learning	program	can	do:	fit	a	function	to	data.	On	the
other	hand,	if	she	possessed	a	model	of	how	the	drug	operated	and	its	causal
structure	remained	intact	in	the	new	location,	then	the	estimand	she	obtained
in	training	would	remain	valid.	It	could	be	applied	to	the	new	data	to	generate
a	new	population-specific	prediction	function.

Many	 scientific	 questions	 look	 different	 “through	 a	 causal	 lens,”	 and	 I
have	delighted	in	playing	with	this	lens,	which	over	the	last	twenty-five	years
has	been	increasingly	empowered	by	new	insights	and	new	tools.	I	hope	and
believe	that	readers	of	this	book	will	share	in	my	delight.	Therefore,	I’d	like
to	close	this	introduction	with	a	preview	of	some	of	the	coming	attractions	in
this	book.

Chapter	 1	 assembles	 the	 three	 steps	 of	 observation,	 intervention,	 and
counterfactuals	 into	 the	 Ladder	 of	 Causation,	 the	 central	 metaphor	 of	 this
book.	It	will	also	expose	you	to	the	basics	of	reasoning	with	causal	diagrams,
our	 main	 modeling	 tool,	 and	 set	 you	 well	 on	 your	 way	 to	 becoming	 a
proficient	 causal	 reasoner—in	 fact,	 you	will	 be	 far	 ahead	 of	 generations	 of
data	 scientists	 who	 attempted	 to	 interpret	 data	 through	 a	 model-blind	 lens,
oblivious	to	the	distinctions	that	the	Ladder	of	Causation	illuminates.

Chapter	2	tells	the	bizarre	story	of	how	the	discipline	of	statistics	inflicted
causal	 blindness	 on	 itself,	 with	 far-reaching	 effects	 for	 all	 sciences	 that
depend	on	data.	It	also	tells	the	story	of	one	of	the	great	heroes	of	this	book,
the	geneticist	Sewall	Wright,	who	in	the	1920s	drew	the	first	causal	diagrams
and	for	many	years	was	one	of	the	few	scientists	who	dared	to	take	causality
seriously.

Chapter	3	relates	 the	equally	curious	story	of	how	I	became	a	convert	 to
causality	 through	 my	 work	 in	 AI	 and	 particularly	 on	 Bayesian	 networks.
These	 were	 the	 first	 tool	 that	 allowed	 computers	 to	 think	 in	 “shades	 of



gray”—and	for	a	time	I	believed	they	held	the	key	to	unlocking	AI.	Toward
the	end	of	the	1980s	I	became	convinced	that	I	was	wrong,	and	this	chapter
tells	 of	 my	 journey	 from	 prophet	 to	 apostate.	 Nevertheless,	 Bayesian
networks	 remain	a	very	 important	 tool	 for	AI	and	still	 encapsulate	much	of
the	 mathematical	 foundation	 of	 causal	 diagrams.	 In	 addition	 to	 a	 gentle,
causality-minded	 introduction	 to	 Bayes’s	 rule	 and	 Bayesian	 methods	 of
reasoning,	 Chapter	 3	 will	 entertain	 the	 reader	 with	 examples	 of	 real-life
applications	of	Bayesian	networks.

Chapter	 4	 tells	 about	 the	 major	 contribution	 of	 statistics	 to	 causal
inference:	the	randomized	controlled	trial	(RCT).	From	a	causal	perspective,
the	RCT	is	a	man-made	tool	for	uncovering	the	query	P(L	|	do(D)),	which	is	a
property	 of	 nature.	 Its	 main	 purpose	 is	 to	 disassociate	 variables	 of	 interest
(say,	D	and	L)	from	other	variables	(Z)	that	would	otherwise	affect	them	both.
Disarming	 the	 distortions,	 or	 “confounding,”	 produced	 by	 such	 lurking
variables	 has	 been	 a	 century-old	 problem.	 This	 chapter	 walks	 the	 reader
through	 a	 surprisingly	 simple	 solution	 to	 the	 general	 confounding	 problem,
which	you	will	grasp	in	ten	minutes	of	playfully	tracing	paths	in	a	diagram.

Chapter	 5	 gives	 an	 account	 of	 a	 seminal	 moment	 in	 the	 history	 of
causation	and	indeed	the	history	of	science,	when	statisticians	struggled	with
the	 question	 of	 whether	 smoking	 causes	 lung	 cancer.	 Unable	 to	 use	 their
favorite	 tool,	 the	 randomized	 controlled	 trial,	 they	 struggled	 to	 agree	 on	 an
answer	or	even	on	how	 to	make	sense	of	 the	question.	The	smoking	debate
brings	 the	 importance	 of	 causality	 into	 its	 sharpest	 focus.	Millions	 of	 lives
were	lost	or	shortened	because	scientists	did	not	have	an	adequate	language	or
methodology	for	answering	causal	questions.

Chapter	 6	 will,	 I	 hope,	 be	 a	 welcome	 diversion	 for	 the	 reader	 after	 the
serious	matters	of	Chapter	5.	This	is	a	chapter	of	paradoxes:	the	Monty	Hall
paradox,	 Simpson’s	 paradox,	 Berkson’s	 paradox,	 and	 others.	 Classical
paradoxes	 like	 these	can	be	enjoyed	as	brainteasers,	but	 they	have	a	serious
side	too,	especially	when	viewed	from	a	causal	perspective.	In	fact,	almost	all
of	 them	 represent	 clashes	 with	 causal	 intuition	 and	 therefore	 reveal	 the
anatomy	 of	 that	 intuition.	 They	were	 canaries	 in	 the	 coal	mine	 that	 should
have	alerted	scientists	to	the	fact	that	human	intuition	is	grounded	in	causal,
not	statistical,	logic.	I	believe	that	the	reader	will	enjoy	this	new	twist	on	his
or	her	favorite	old	paradoxes.

Chapters	7	to	9	finally	take	readers	on	a	thrilling	ascent	of	the	Ladder	of
Causation.	 We	 start	 in	 Chapter	 7	 with	 questions	 about	 intervention	 and
explain	 how	 my	 students	 and	 I	 went	 through	 a	 twenty-year	 struggle	 to



automate	 the	 answers	 to	do-type	 questions.	We	 succeeded,	 and	 this	 chapter
explains	the	guts	of	the	“causal	inference	engine,”	which	produces	the	yes/no
answer	and	the	estimand	in	Figure	I.1.	Studying	this	engine	will	empower	the
reader	 to	 spot	 certain	 patterns	 in	 the	 causal	 diagram	 that	 deliver	 immediate
answers	to	the	causal	query.	These	patterns	are	called	back-door	adjustment,
front-door	 adjustment,	 and	 instrumental	 variables,	 the	workhorses	 of	 causal
inference	in	practice.

Chapter	8	takes	you	to	the	top	of	the	ladder	by	discussing	counterfactuals.
These	have	been	seen	as	a	fundamental	part	of	causality	at	least	since	1748,
when	 Scottish	 philosopher	 David	 Hume	 proposed	 the	 following	 somewhat
contorted	 definition	 of	 causation:	 “We	may	 define	 a	 cause	 to	 be	 an	 object
followed	 by	 another,	 and	 where	 all	 the	 objects,	 similar	 to	 the	 first,	 are
followed	by	objects	 similar	 to	 the	 second.	Or,	 in	other	words,	where,	 if	 the
first	 object	 had	 not	 been,	 the	 second	 never	 had	 existed.”	 David	 Lewis,	 a
philosopher	at	Princeton	University	who	died	in	2001,	pointed	out	that	Hume
really	gave	 two	definitions,	not	one,	 the	 first	of	 regularity	 (i.e.,	 the	cause	 is
regularly	followed	by	the	effect)	and	the	second	of	the	counterfactual	(“if	the
first	 object	 had	 not	 been…”).	While	 philosophers	 and	 scientists	 had	mostly
paid	attention	to	the	regularity	definition,	Lewis	argued	that	the	counterfactual
definition	aligns	more	closely	with	human	intuition:	“We	think	of	a	cause	as
something	 that	 makes	 a	 difference,	 and	 the	 difference	 it	 makes	 must	 be	 a
difference	from	what	would	have	happened	without	it.”

Readers	 will	 be	 excited	 to	 find	 out	 that	 we	 can	 now	 move	 past	 the
academic	 debates	 and	 compute	 an	 actual	 value	 (or	 probability)	 for	 any
counterfactual	 query,	 no	 matter	 how	 convoluted.	 Of	 special	 interest	 are
questions	concerning	necessary	and	sufficient	causes	of	observed	events.	For
example,	how	likely	is	it	that	the	defendant’s	action	was	a	necessary	cause	of
the	 claimant’s	 injury?	 How	 likely	 is	 it	 that	 man-made	 climate	 change	 is	 a
sufficient	cause	of	a	heat	wave?

Finally,	 Chapter	 9	 discusses	 the	 topic	 of	 mediation.	 You	 may	 have
wondered,	 when	 we	 talked	 about	 drawing	 arrows	 in	 a	 causal	 diagram,
whether	 we	 should	 draw	 an	 arrow	 from	Drug	D	 to	 Lifespan	 L	 if	 the	 drug
affects	lifespan	only	by	way	of	its	effect	on	blood	pressure	Z	(a	mediator).	In
other	words,	is	the	effect	of	D	on	L	direct	or	indirect?	And	if	both,	how	do	we
assess	 their	 relative	 importance?	 Such	 questions	 are	 not	 only	 of	 great
scientific	 interest	but	also	have	practical	 ramifications;	 if	we	understand	 the
mechanism	 through	 which	 a	 drug	 acts,	 we	might	 be	 able	 to	 develop	 other
drugs	with	 the	 same	 effect	 that	 are	 cheaper	 or	 have	 fewer	 side	 effects.	The
reader	 will	 be	 pleased	 to	 discover	 how	 this	 age-old	 quest	 for	 a	 mediation



mechanism	has	been	reduced	to	an	algebraic	exercise	and	how	scientists	are
using	the	new	tools	in	the	causal	tool	kit	to	solve	such	problems.

Chapter	10	brings	the	book	to	a	close	by	coming	back	to	the	problem	that
initially	 led	 me	 to	 causation:	 the	 problem	 of	 automating	 human-level
intelligence	(sometimes	called	“strong	AI”).	I	believe	that	causal	reasoning	is
essential	 for	machines	 to	 communicate	with	 us	 in	 our	 own	 language	 about
policies,	 experiments,	 explanations,	 theories,	 regret,	 responsibility,	 free	will,
and	obligations—and,	eventually,	to	make	their	own	moral	decisions.

If	I	could	sum	up	the	message	of	this	book	in	one	pithy	phrase,	it	would	be
that	 you	 are	 smarter	 than	 your	 data.	 Data	 do	 not	 understand	 causes	 and
effects;	humans	do.	I	hope	that	the	new	science	of	causal	inference	will	enable
us	 to	 better	 understand	 how	 we	 do	 it,	 because	 there	 is	 no	 better	 way	 to
understand	ourselves	 than	by	 emulating	ourselves.	 In	 the	 age	of	 computers,
this	 new	 understanding	 also	 brings	 with	 it	 the	 prospect	 of	 amplifying	 our
innate	abilities	so	that	we	can	make	better	sense	of	data,	be	it	big	or	small.



1

THE	LADDER	OF	CAUSATION

IN	the	beginning…

I	was	probably	six	or	seven	years	old	when	I	first	read	the	story	of	Adam
and	Eve	in	the	Garden	of	Eden.	My	classmates	and	I	were	not	at	all	surprised
by	 God’s	 capricious	 demands,	 forbidding	 them	 to	 eat	 from	 the	 Tree	 of
Knowledge.	 Deities	 have	 their	 reasons,	 we	 thought.	 What	 we	 were	 more
intrigued	 by	 was	 the	 idea	 that	 as	 soon	 as	 they	 ate	 from	 the	 Tree	 of
Knowledge,	Adam	and	Eve	became	conscious,	like	us,	of	their	nakedness.

As	teenagers,	our	interest	shifted	slowly	to	the	more	philosophical	aspects
of	 the	story.	 (Israeli	students	 read	Genesis	several	 times	a	year.)	Of	primary
concern	to	us	was	the	notion	that	the	emergence	of	human	knowledge	was	not
a	 joyful	process	but	 a	painful	one,	 accompanied	by	disobedience,	guilt,	 and
punishment.	Was	 it	worth	 giving	 up	 the	 carefree	 life	 of	Eden?	 some	 asked.
Were	 the	 agricultural	 and	 scientific	 revolutions	 that	 followed	 worth	 the
economic	hardships,	wars,	and	social	injustices	that	modern	life	entails?

Don’t	 get	 me	 wrong:	 we	 were	 no	 creationists;	 even	 our	 teachers	 were
Darwinists	 at	 heart.	We	knew,	 however,	 that	 the	 author	who	 choreographed
the	 story	 of	 Genesis	 struggled	 to	 answer	 the	 most	 pressing	 philosophical
questions	of	his	time.	We	likewise	suspected	that	this	story	bore	the	cultural
footprints	of	the	actual	process	by	which	Homo	sapiens	gained	dominion	over
our	 planet.	 What,	 then,	 was	 the	 sequence	 of	 steps	 in	 this	 speedy,	 super-
evolutionary	process?

My	interest	in	these	questions	waned	in	my	early	career	as	a	professor	of



engineering	but	was	reignited	suddenly	in	the	1990s,	when,	while	writing	my
book	Causality,	I	confronted	the	Ladder	of	Causation.

As	 I	 reread	Genesis	 for	 the	 hundredth	 time,	 I	 noticed	 a	 nuance	 that	 had
somehow	 eluded	 my	 attention	 for	 all	 those	 years.	 When	 God	 finds	 Adam
hiding	in	the	garden,	he	asks,	“Have	you	eaten	from	the	tree	which	I	forbade
you?”	And	Adam	answers,	“The	woman	you	gave	me	for	a	companion,	she
gave	me	 fruit	 from	 the	 tree	 and	 I	 ate.”	 “What	 is	 this	you	have	done?”	God
asks	Eve.	She	replies,	“The	serpent	deceived	me,	and	I	ate.”

As	we	know,	 this	 blame	game	did	 not	work	very	well	 on	 the	Almighty,
who	 banished	 both	 of	 them	 from	 the	 garden.	 But	 here	 is	 the	 point	 I	 had
missed	before:	God	asked	“what,”	and	they	answered	“why.”	God	asked	for
the	facts,	and	they	replied	with	explanations.	Moreover,	both	were	thoroughly
convinced	 that	 naming	 causes	 would	 somehow	 paint	 their	 actions	 in	 a
different	light.	Where	did	they	get	this	idea?

For	 me,	 these	 nuances	 carried	 three	 profound	 implications.	 First,	 very
early	in	our	evolution,	we	humans	realized	that	the	world	is	not	made	up	only
of	 dry	 facts	 (what	 we	 might	 call	 data	 today);	 rather,	 these	 facts	 are	 glued
together	 by	 an	 intricate	 web	 of	 cause-effect	 relationships.	 Second,	 causal
explanations,	not	dry	facts,	make	up	the	bulk	of	our	knowledge,	and	should	be
the	 cornerstone	 of	 machine	 intelligence.	 Finally,	 our	 transition	 from
processors	of	data	 to	makers	of	 explanations	was	not	gradual;	 it	was	a	 leap
that	 required	 an	 external	 push	 from	 an	 uncommon	 fruit.	 This	 matched
perfectly	with	what	I	had	observed	theoretically	in	 the	Ladder	of	Causation:
No	machine	can	derive	explanations	from	raw	data.	It	needs	a	push.

If	we	seek	confirmation	of	these	messages	from	evolutionary	science,	we
won’t	 find	 the	 Tree	 of	 Knowledge,	 of	 course,	 but	 we	 still	 see	 a	 major
unexplained	transition.	We	understand	now	that	humans	evolved	from	apelike
ancestors	over	a	period	of	5	million	to	6	million	years	and	that	such	gradual
evolutionary	processes	are	not	uncommon	to	life	on	earth.	But	in	roughly	the
last	50,000	years,	something	unique	happened,	which	some	call	the	Cognitive
Revolution	 and	others	 (with	 a	 touch	of	 irony)	 call	 the	Great	Leap	Forward.
Humans	 acquired	 the	 ability	 to	 modify	 their	 environment	 and	 their	 own
abilities	at	a	dramatically	faster	rate.

For	example,	over	millions	of	years,	eagles	and	owls	have	evolved	 truly
amazing	 eyesight—yet	 they’ve	 never	 devised	 eyeglasses,	 microscopes,
telescopes,	or	night-vision	goggles.	Humans	have	produced	these	miracles	in
a	 matter	 of	 centuries.	 I	 call	 this	 phenomenon	 the	 “super-evolutionary
speedup.”	Some	 readers	might	 object	 to	my	 comparing	 apples	 and	oranges,



evolution	to	engineering,	but	that	is	exactly	my	point.	Evolution	has	endowed
us	with	the	ability	to	engineer	our	lives,	a	gift	she	has	not	bestowed	on	eagles
and	owls,	and	the	question,	again,	is	“Why?”	What	computational	facility	did
humans	suddenly	acquire	that	eagles	did	not?

Many	 theories	have	been	proposed,	but	one	 is	especially	pertinent	 to	 the
idea	of	causation.	In	his	book	Sapiens,	historian	Yuval	Harari	posits	that	our
ancestors’	capacity	 to	 imagine	nonexistent	 things	was	 the	key	to	everything,
for	 it	 allowed	 them	 to	 communicate	 better.	 Before	 this	 change,	 they	 could
only	 trust	people	 from	their	 immediate	 family	or	 tribe.	Afterward	 their	 trust
extended	 to	 larger	 communities,	 bound	 by	 common	 fantasies	 (for	 example,
belief	in	invisible	yet	imaginable	deities,	in	the	afterlife,	and	in	the	divinity	of
the	leader)	and	expectations.	Whether	or	not	you	agree	with	Harari’s	theory,
the	connection	between	imagining	and	causal	relations	is	almost	self-evident.
It	 is	 useless	 to	 ask	 for	 the	 causes	 of	 things	 unless	 you	 can	 imagine	 their
consequences.	Conversely,	you	cannot	claim	that	Eve	caused	you	to	eat	from
the	tree	unless	you	can	imagine	a	world	in	which,	counter	to	facts,	she	did	not
hand	you	the	apple.

Back	 to	 our	 Homo	 sapiens	 ancestors:	 their	 newly	 acquired	 causal
imagination	enabled	them	to	do	many	things	more	efficiently	through	a	tricky
process	we	call	 “planning.”	 Imagine	a	 tribe	preparing	 for	 a	mammoth	hunt.
What	 would	 it	 take	 for	 them	 to	 succeed?	My	 mammoth-hunting	 skills	 are
rusty,	I	must	admit,	but	as	a	student	of	thinking	machines,	I	have	learned	one
thing:	 a	 thinking	 entity	 (computer,	 caveman,	 or	 professor)	 can	 only
accomplish	 a	 task	 of	 such	 magnitude	 by	 planning	 things	 in	 advance—by
deciding	how	many	hunters	to	recruit;	by	gauging,	given	wind	conditions,	the
direction	from	which	 to	approach	 the	mammoth;	 in	short,	by	 imagining	and
comparing	 the	 consequences	 of	 several	 hunting	 strategies.	 To	 do	 this,	 the
thinking	entity	must	possess,	 consult,	 and	manipulate	 a	mental	model	of	 its
reality.

FIGURE	1.1.	Perceived	causes	of	a	successful	mammoth	hunt.

Figure	1.1	shows	how	we	might	draw	such	a	mental	model.	Each	dot	 in
Figure	1.1	represents	a	cause	of	success.	Note	that	 there	are	multiple	causes
and	that	none	of	them	are	deterministic.	That	is,	we	cannot	be	sure	that	having
more	hunters	will	enable	success	or	that	rain	will	prevent	it,	but	these	factors



do	change	the	probability	of	success.

The	mental	model	is	the	arena	where	imagination	takes	place.	It	enables	us
to	 experiment	 with	 different	 scenarios	 by	 making	 local	 alterations	 to	 the
model.	 Somewhere	 in	 our	 hunters’	 mental	 model	 was	 a	 subroutine	 that
evaluated	the	effect	of	the	number	of	hunters.	When	they	considered	adding
more,	they	didn’t	have	to	evaluate	every	other	factor	from	scratch.	They	could
make	a	local	change	to	the	model,	replacing	“Hunters	=	8”	with	“Hunters	=
9,”	and	reevaluate	the	probability	of	success.	This	modularity	is	a	key	feature
of	causal	models.

I	 don’t	 mean	 to	 imply,	 of	 course,	 that	 early	 humans	 actually	 drew	 a
pictorial	model	like	this	one.	But	when	we	seek	to	emulate	human	thought	on
a	 computer,	 or	 indeed	when	we	 try	 to	 solve	 unfamiliar	 scientific	 problems,
drawing	an	explicit	dots-and-arrows	picture	is	extremely	useful.	These	causal
diagrams	 are	 the	 computational	 core	 of	 the	 “causal	 inference	 engine”
described	in	the	Introduction.

THE	THREE	LEVELS	OF	CAUSATION

So	 far	 I	 may	 have	 given	 the	 impression	 that	 the	 ability	 to	 organize	 our
knowledge	of	the	world	into	causes	and	effects	was	monolithic	and	acquired
all	 at	 once.	 In	 fact,	my	 research	 on	machine	 learning	 has	 taught	me	 that	 a
causal	 learner	must	master	 at	 least	 three	 distinct	 levels	 of	 cognitive	 ability:
seeing,	doing,	and	imagining.

The	 first,	 seeing	 or	 observing,	 entails	 detection	 of	 regularities	 in	 our
environment	and	 is	shared	by	many	animals	as	well	as	early	humans	before
the	Cognitive	Revolution.	The	second,	doing,	entails	predicting	 the	effect(s)
of	 deliberate	 alterations	 of	 the	 environment	 and	 choosing	 among	 these
alterations	 to	 produce	 a	 desired	 outcome.	 Only	 a	 small	 handful	 of	 species
have	 demonstrated	 elements	 of	 this	 skill.	 Use	 of	 tools,	 provided	 it	 is
intentional	and	not	just	accidental	or	copied	from	ancestors,	could	be	taken	as
a	 sign	 of	 reaching	 this	 second	 level.	Yet	 even	 tool	 users	 do	 not	 necessarily
possess	a	“theory”	of	 their	 tool	 that	 tells	 them	why	it	works	and	what	 to	do
when	it	doesn’t.	For	that,	you	need	to	have	achieved	a	level	of	understanding
that	permits	 imagining.	 It	was	primarily	 this	 third	 level	 that	prepared	us	 for
further	revolutions	in	agriculture	and	science	and	led	to	a	sudden	and	drastic
change	in	our	species’	impact	on	the	planet.

I	 cannot	 prove	 this,	 but	 I	 can	prove	mathematically	 that	 the	 three	 levels



differ	 fundamentally,	 each	 unleashing	 capabilities	 that	 the	 ones	 below	 it	 do
not.	The	framework	I	use	to	show	this	goes	back	to	Alan	Turing,	the	pioneer
of	research	in	artificial	intelligence	(AI),	who	proposed	to	classify	a	cognitive
system	in	 terms	of	 the	queries	 it	can	answer.	This	approach	 is	exceptionally
fruitful	 when	 we	 are	 talking	 about	 causality	 because	 it	 bypasses	 long	 and
unproductive	discussions	of	what	exactly	causality	is	and	focuses	instead	on
the	 concrete	 and	 answerable	 question	 “What	 can	 a	 causal	 reasoner	 do?”	Or
more	precisely,	what	can	an	organism	possessing	a	causal	model	compute	that
one	lacking	such	a	model	cannot?



FIGURE	1.2.	The	Ladder	of	Causation,	with	representative	organisms	at	each

level.	Most	animals,	as	well	as	present-day	learning	machines,	are	on	the	first
rung,	learning	from	association.	Tool	users,	such	as	early	humans,	are	on	the
second	rung	if	they	act	by	planning	and	not	merely	by	imitation.	We	can	also
use	experiments	to	learn	the	effects	of	interventions,	and	presumably	this	is



how	babies	acquire	much	of	their	causal	knowledge.	Counterfactual	learners,

on	the	top	rung,	can	imagine	worlds	that	do	not	exist	and	infer	reasons	for
observed	phenomena.	(Source:	Drawing	by	Maayan	Harel.)



While	 Turing	 was	 looking	 for	 a	 binary	 classification—human	 or
nonhuman—ours	 has	 three	 tiers,	 corresponding	 to	 progressively	 more
powerful	causal	queries.	Using	these	criteria,	we	can	assemble	the	three	levels
of	queries	into	one	Ladder	of	Causation	(Figure	1.2),	a	metaphor	that	we	will
return	to	again	and	again.

Let’s	take	some	time	to	consider	each	rung	of	the	ladder	in	detail.	At	the
first	level,	association,	we	are	looking	for	regularities	in	observations.	This	is
what	an	owl	does	when	observing	how	a	rat	moves	and	figuring	out	where	the
rodent	is	likely	to	be	a	moment	later,	and	it	is	what	a	computer	Go	program
does	when	it	studies	a	database	of	millions	of	Go	games	so	that	it	can	figure
out	which	moves	are	associated	with	a	higher	percentage	of	wins.	We	say	that
one	event	is	associated	with	another	if	observing	one	changes	the	likelihood
of	observing	the	other.

The	 first	 rung	 of	 the	 ladder	 calls	 for	 predictions	 based	 on	 passive
observations.	 It	 is	 characterized	 by	 the	 question	 “What	 if	 I	 see	…?”	 For
instance,	imagine	a	marketing	director	at	a	department	store	who	asks,	“How
likely	 is	 a	 customer	who	bought	 toothpaste	 to	 also	 buy	dental	 floss?”	Such
questions	 are	 the	 bread	 and	butter	 of	 statistics,	 and	 they	 are	 answered,	 first
and	foremost,	by	collecting	and	analyzing	data.	In	our	case,	the	question	can
be	answered	by	first	taking	the	data	consisting	of	the	shopping	behavior	of	all
customers,	selecting	only	those	who	bought	toothpaste,	and,	focusing	on	the
latter	 group,	 computing	 the	 proportion	 who	 also	 bought	 dental	 floss.	 This
proportion,	 also	 known	 as	 a	 “conditional	 probability,”	 measures	 (for	 large
data)	 the	 degree	 of	 association	 between	 “buying	 toothpaste”	 and	 “buying
floss.”	Symbolically,	we	can	write	it	as	P(floss	 |	toothpaste).	The	“P”	stands
for	“probability,”	and	the	vertical	line	means	“given	that	you	see.”

Statisticians	 have	 developed	 many	 elaborate	 methods	 to	 reduce	 a	 large
body	 of	 data	 and	 identify	 associations	 between	 variables.	 “Correlation”	 or
“regression,”	a	 typical	measure	of	association	mentioned	often	 in	 this	book,
involves	fitting	a	line	to	a	collection	of	data	points	and	taking	the	slope	of	that
line.	Some	associations	might	have	obvious	causal	interpretations;	others	may
not.	But	statistics	alone	cannot	tell	which	is	the	cause	and	which	is	the	effect,
toothpaste	or	floss.	From	the	point	of	view	of	 the	sales	manager,	 it	may	not
really	matter.	Good	predictions	need	not	have	good	explanations.	The	owl	can
be	a	good	hunter	without	understanding	why	the	rat	always	goes	from	point	A
to	point	B.

Some	 readers	 may	 be	 surprised	 to	 see	 that	 I	 have	 placed	 present-day
learning	machines	squarely	on	rung	one	of	the	Ladder	of	Causation,	sharing



the	 wisdom	 of	 an	 owl.	 We	 hear	 almost	 every	 day,	 it	 seems,	 about	 rapid
advances	in	machine	learning	systems—self-driving	cars,	speech-recognition
systems,	 and,	 especially	 in	 recent	 years,	 deep-learning	 algorithms	 (or	 deep
neural	networks).	How	could	they	still	be	only	at	level	one?

The	 successes	 of	 deep	 learning	 have	 been	 truly	 remarkable	 and	 have
caught	 many	 of	 us	 by	 surprise.	 Nevertheless,	 deep	 learning	 has	 succeeded
primarily	by	showing	that	certain	questions	or	tasks	we	thought	were	difficult
are	in	fact	not.	It	has	not	addressed	the	truly	difficult	questions	that	continue
to	 prevent	 us	 from	achieving	 humanlike	AI.	As	 a	 result	 the	 public	 believes
that	“strong	AI,”	machines	that	think	like	humans,	is	just	around	the	corner	or
maybe	even	here	already.	In	reality,	nothing	could	be	farther	from	the	truth.	I
fully	agree	with	Gary	Marcus,	a	neuroscientist	at	New	York	University,	who
recently	wrote	in	the	New	York	Times	that	the	field	of	artificial	intelligence	is
“bursting	 with	 microdiscoveries”—the	 sort	 of	 things	 that	 make	 good	 press
releases—but	 machines	 are	 still	 disappointingly	 far	 from	 humanlike
cognition.	My	colleague	in	computer	science	at	the	University	of	California,
Los	 Angeles,	 Adnan	 Darwiche,	 has	 titled	 a	 position	 paper	 “Human-Level
Intelligence	or	Animal-Like	Abilities?”	which	I	think	frames	the	question	in
just	 the	 right	 way.	 The	 goal	 of	 strong	 AI	 is	 to	 produce	 machines	 with
humanlike	 intelligence,	 able	 to	 converse	 with	 and	 guide	 humans.	 Deep
learning	has	instead	given	us	machines	with	truly	impressive	abilities	but	no
intelligence.	The	difference	is	profound	and	lies	in	the	absence	of	a	model	of
reality.

Just	 as	 they	 did	 thirty	 years	 ago,	machine	 learning	 programs	 (including
those	with	deep	neural	networks)	operate	almost	entirely	 in	an	associational
mode.	They	are	driven	by	a	stream	of	observations	to	which	they	attempt	to
fit	a	function,	in	much	the	same	way	that	a	statistician	tries	to	fit	a	line	to	a
collection	of	points.	Deep	neural	networks	have	added	many	more	 layers	 to
the	 complexity	 of	 the	 fitted	 function,	 but	 raw	 data	 still	 drives	 the	 fitting
process.	 They	 continue	 to	 improve	 in	 accuracy	 as	more	 data	 are	 fitted,	 but
they	do	not	 benefit	 from	 the	 “super-evolutionary	 speedup.”	 If,	 for	 example,
the	 programmers	 of	 a	 driverless	 car	 want	 it	 to	 react	 differently	 to	 new
situations,	they	have	to	add	those	new	reactions	explicitly.	The	machine	will
not	figure	out	for	 itself	 that	a	pedestrian	with	a	bottle	of	whiskey	in	hand	is
likely	 to	 respond	 differently	 to	 a	 honking	 horn.	 This	 lack	 of	 flexibility	 and
adaptability	 is	 inevitable	 in	 any	 system	 that	 works	 at	 the	 first	 level	 of	 the
Ladder	of	Causation.

We	step	up	to	the	next	level	of	causal	queries	when	we	begin	to	change	the
world.	A	typical	question	for	this	level	is	“What	will	happen	to	our	floss	sales



if	we	 double	 the	 price	 of	 toothpaste?”	This	 already	 calls	 for	 a	 new	kind	 of
knowledge,	absent	from	the	data,	which	we	find	at	rung	two	of	the	Ladder	of
Causation,	intervention.

Intervention	 ranks	 higher	 than	 association	 because	 it	 involves	 not	 just
seeing	 but	 changing	what	 is.	 Seeing	 smoke	 tells	 us	 a	 totally	 different	 story
about	the	likelihood	of	fire	than	making	smoke.	We	cannot	answer	questions
about	interventions	with	passively	collected	data,	no	matter	how	big	the	data
set	 or	 how	 deep	 the	 neural	 network.	 Many	 scientists	 have	 been	 quite
traumatized	 to	 learn	 that	 none	 of	 the	 methods	 they	 learned	 in	 statistics	 is
sufficient	 even	 to	 articulate,	 let	 alone	 answer,	 a	 simple	 question	 like	 “What
happens	 if	we	double	 the	price?”	 I	 know	 this	 because	on	many	occasions	 I
have	helped	them	climb	to	the	next	rung	of	the	ladder.

Why	can’t	we	answer	our	floss	question	just	by	observation?	Why	not	just
go	 into	 our	 vast	 database	 of	 previous	 purchases	 and	 see	 what	 happened
previously	 when	 toothpaste	 cost	 twice	 as	 much?	 The	 reason	 is	 that	 on	 the
previous	occasions,	the	price	may	have	been	higher	for	different	reasons.	For
example,	 the	 product	may	 have	 been	 in	 short	 supply,	 and	 every	 other	 store
also	 had	 to	 raise	 its	 price.	 But	 now	 you	 are	 considering	 a	 deliberate
intervention	 that	 will	 set	 a	 new	 price	 regardless	 of	 market	 conditions.	 The
result	might	be	quite	different	from	when	the	customer	couldn’t	find	a	better
deal	elsewhere.	If	you	had	data	on	the	market	conditions	 that	existed	on	the
previous	occasions,	 perhaps	you	could	make	 a	better	 prediction…	but	what
data	do	you	need?	And	then,	how	would	you	figure	it	out?	Those	are	exactly
the	questions	the	science	of	causal	inference	allows	us	to	answer.

A	very	direct	way	to	predict	the	result	of	an	intervention	is	to	experiment
with	 it	 under	 carefully	 controlled	 conditions.	 Big-data	 companies	 like
Facebook	know	this	and	constantly	perform	experiments	to	see	what	happens
if	items	on	the	screen	are	arranged	differently	or	the	customer	gets	a	different
prompt	(or	even	a	different	price).

More	interesting	and	less	widely	known—even	in	Silicon	Valley—is	that
successful	predictions	of	the	effects	of	interventions	can	sometimes	be	made
even	without	an	experiment.	For	example,	the	sales	manager	could	develop	a
model	 of	 consumer	 behavior	 that	 includes	 market	 conditions.	 Even	 if	 she
doesn’t	 have	 data	 on	 every	 factor,	 she	 might	 have	 data	 on	 enough	 key
surrogates	 to	make	 the	 prediction.	A	 sufficiently	 strong	 and	 accurate	 causal
model	can	allow	us	to	use	rung-one	(observational)	data	to	answer	rung-two
(interventional)	queries.	Without	the	causal	model,	we	could	not	go	from	rung
one	to	rung	two.	This	is	why	deep-learning	systems	(as	long	as	they	use	only



rung-one	data	and	do	not	have	a	causal	model)	will	never	be	able	to	answer
questions	 about	 interventions,	 which	 by	 definition	 break	 the	 rules	 of	 the
environment	the	machine	was	trained	in.

As	these	examples	illustrate,	the	defining	query	of	the	second	rung	of	the
Ladder	of	Causation	is	“What	 if	we	do…?”	What	will	happen	if	we	change
the	environment?	We	can	write	this	kind	of	query	as	P(floss	|	do(toothpaste)),
which	asks	about	the	probability	that	we	will	sell	floss	at	a	certain	price,	given
that	we	set	the	price	of	toothpaste	at	another	price.

Another	 popular	 question	 at	 the	 second	 level	 of	 causation	 is	 “How?,”
which	is	a	cousin	of	“What	if	we	do…?”	For	instance,	the	manager	may	tell
us	that	we	have	too	much	toothpaste	in	our	warehouse.	“How	can	we	sell	it?”
he	asks.	That	is,	what	price	should	we	set	for	it?	Again,	the	question	refers	to
an	 intervention,	 which	 we	 want	 to	 perform	 mentally	 before	 we	 decide
whether	and	how	to	do	it	in	real	life.	That	requires	a	causal	model.

We	perform	interventions	all	the	time	in	our	daily	lives,	although	we	don’t
usually	use	such	a	fancy	term	for	them.	For	example,	when	we	take	aspirin	to
cure	a	headache,	we	are	intervening	on	one	variable	(the	quantity	of	aspirin	in
our	 body)	 in	 order	 to	 affect	 another	 one	 (our	 headache	 status).	 If	 we	 are
correct	in	our	causal	belief	about	aspirin,	the	“outcome”	variable	will	respond
by	changing	from	“headache”	to	“no	headache.”

While	 reasoning	 about	 interventions	 is	 an	 important	 step	 on	 the	 causal
ladder,	it	still	does	not	answer	all	questions	of	interest.	We	might	wonder,	My
headache	is	gone	now,	but	why?	Was	it	the	aspirin	I	took?	The	food	I	ate?	The
good	news	 I	 heard?	These	queries	 take	us	 to	 the	 top	 rung	of	 the	Ladder	of
Causation,	 the	 level	of	counterfactuals,	because	 to	answer	 them	we	must	go
back	 in	 time,	change	history,	and	ask,	“What	would	have	happened	 if	 I	had
not	taken	the	aspirin?”	No	experiment	in	the	world	can	deny	treatment	to	an
already	 treated	person	and	compare	 the	 two	outcomes,	so	we	must	 import	a
whole	new	kind	of	knowledge.

Counterfactuals	 have	 a	 particularly	 problematic	 relationship	 with	 data
because	data	are,	by	definition,	facts.	They	cannot	tell	us	what	will	happen	in
a	 counterfactual	 or	 imaginary	world	where	 some	 observed	 facts	 are	 bluntly
negated.	 Yet	 the	 human	 mind	 makes	 such	 explanation-seeking	 inferences
reliably	and	repeatably.	Eve	did	it	when	she	identified	“The	serpent	deceived
me”	as	the	reason	for	her	action.	This	ability	most	distinguishes	human	from
animal	intelligence,	as	well	as	from	model-blind	versions	of	AI	and	machine
learning.



You	may	 be	 skeptical	 that	 science	 can	make	 any	 useful	 statement	 about
“would	haves,”	worlds	 that	do	not	 exist	 and	 things	 that	have	not	happened.
But	 it	 does	 and	 always	 has.	 The	 laws	 of	 physics,	 for	 example,	 can	 be
interpreted	 as	 counterfactual	 assertions,	 such	 as	 “Had	 the	 weight	 on	 this
spring	doubled,	 its	 length	would	have	doubled	as	well”	 (Hooke’s	 law).	This
statement	 is,	 of	 course,	 backed	 by	 a	 wealth	 of	 experimental	 (rung-two)
evidence,	 derived	 from	 hundreds	 of	 springs,	 in	 dozens	 of	 laboratories,	 on
thousands	 of	 different	 occasions.	 However,	 once	 anointed	 as	 a	 “law,”
physicists	interpret	it	as	a	functional	relationship	that	governs	this	very	spring,
at	 this	 very	moment,	 under	 hypothetical	 values	 of	 the	weight.	 All	 of	 these
different	worlds,	where	the	weight	is	x	pounds	and	the	length	of	the	spring	is
Lx	 inches,	 are	 treated	 as	 objectively	 knowable	 and	 simultaneously	 active,
even	though	only	one	of	them	actually	exists.

Going	 back	 to	 the	 toothpaste	 example,	 a	 top-rung	 question	 would	 be
“What	 is	 the	 probability	 that	 a	 customer	who	 bought	 toothpaste	would	 still
have	bought	it	if	we	had	doubled	the	price?”	We	are	comparing	the	real	world
(where	we	know	that	the	customer	bought	the	toothpaste	at	the	current	price)
to	a	fictitious	world	(where	the	price	is	twice	as	high).

The	 rewards	 of	 having	 a	 causal	 model	 that	 can	 answer	 counterfactual
questions	are	immense.	Finding	out	why	a	blunder	occurred	allows	us	to	take
the	 right	 corrective	 measures	 in	 the	 future.	 Finding	 out	 why	 a	 treatment
worked	on	some	people	and	not	on	others	can	lead	to	a	new	cure	for	a	disease.
Answering	 the	 question	 “What	 if	 things	 had	 been	 different?”	 allows	 us	 to
learn	 from	 history	 and	 the	 experience	 of	 others,	 something	 that	 no	 other
species	appears	to	do.	It	 is	not	surprising	that	 the	ancient	Greek	philosopher
Democritus	(460–370	BC)	said,	“I	would	rather	discover	one	cause	than	be	the
King	of	Persia.”

The	 position	 of	 counterfactuals	 at	 the	 top	 of	 the	 Ladder	 of	 Causation
explains	why	I	place	such	emphasis	on	them	as	a	key	moment	in	the	evolution
of	human	consciousness.	I	 totally	agree	with	Yuval	Harari	 that	 the	depiction
of	imaginary	creatures	was	a	manifestation	of	a	new	ability,	which	he	calls	the
Cognitive	Revolution.	His	 prototypical	 example	 is	 the	 Lion	Man	 sculpture,
found	 in	 Stadel	 Cave	 in	 southwestern	 Germany	 and	 now	 held	 at	 the	 Ulm
Museum	 (see	 Figure	 1.3).	 The	 Lion	 Man,	 roughly	 40,000	 years	 old,	 is	 a
mammoth	tusk	sculpted	into	the	form	of	a	chimera,	half	man	and	half	lion.

We	do	not	know	who	sculpted	the	Lion	Man	or	what	its	purpose	was,	but
we	do	know	that	anatomically	modern	humans	made	it	and	that	it	represents	a
break	 with	 any	 art	 or	 craft	 that	 had	 gone	 before.	 Previously,	 humans	 had



fashioned	tools	and	representational	art,	from	beads	to	flutes	to	spear	points	to
elegant	 carvings	 of	 horses	 and	 other	 animals.	 The	Lion	Man	 is	 different:	 a
creature	of	pure	imagination.









FIGURE	1.3.	The	Lion	Man	of	Stadel	Cave.	The	earliest	known	representation	of

an	imaginary	creature	(half	man	and	half	lion),	it	is	emblematic	of	a	newly
developed	cognitive	ability,	the	capacity	to	reason	about	counterfactuals.
(Source:	Photo	by	Yvonne	Mühleis,	courtesy	of	State	Office	for	Cultural

Heritage	Baden-Württemberg/Ulmer	Museum,	Ulm,	Germany.)

As	 a	manifestation	 of	 our	 newfound	 ability	 to	 imagine	 things	 that	 have
never	 existed,	 the	Lion	Man	 is	 the	 precursor	 of	 every	 philosophical	 theory,
scientific	 discovery,	 and	 technological	 innovation,	 from	 microscopes	 to
airplanes	 to	 computers.	 Every	 one	 of	 these	 had	 to	 take	 shape	 in	 someone’s
imagination	before	it	was	realized	in	the	physical	world.

This	 leap	 forward	 in	 cognitive	 ability	was	 as	 profound	 and	 important	 to
our	 species	 as	 any	 of	 the	 anatomical	 changes	 that	made	 us	 human.	Within
10,000	years	after	the	Lion	Man’s	creation,	all	other	hominids	(except	for	the
very	 geographically	 isolated	 Flores	 hominids)	 had	 become	 extinct.	 And
humans	 have	 continued	 to	 change	 the	 natural	 world	 with	 incredible	 speed,
using	 our	 imagination	 to	 survive,	 adapt,	 and	 ultimately	 take	 over.	 The
advantage	we	gained	from	imagining	counterfactuals	was	the	same	then	as	it
is	 today:	 flexibility,	 the	 ability	 to	 reflect	 and	 improve	 on	 past	 actions,	 and,
perhaps	even	more	significant,	our	willingness	to	take	responsibility	for	past
and	current	actions.

As	shown	in	Figure	1.2,	the	characteristic	queries	for	the	third	rung	of	the
Ladder	of	Causation	are	“What	if	I	had	done…?”	and	“Why?”	Both	involve
comparing	 the	observed	world	 to	a	counterfactual	world.	Experiments	alone
cannot	answer	such	questions.	While	rung	one	deals	with	the	seen	world,	and
rung	two	deals	with	a	brave	new	world	that	is	seeable,	rung	three	deals	with	a
world	that	cannot	be	seen	(because	it	contradicts	what	is	seen).	To	bridge	the
gap,	we	need	a	model	of	 the	underlying	causal	process,	 sometimes	called	a
“theory”	or	even	(in	cases	where	we	are	extraordinarily	confident)	a	“law	of
nature.”	 In	 short,	we	need	understanding.	This	 is,	 of	 course,	 a	holy	grail	 of
any	 branch	 of	 science—the	 development	 of	 a	 theory	 that	 will	 enable	 us	 to
predict	what	will	happen	in	situations	we	have	not	even	envisioned	yet.	But	it
goes	even	further:	having	such	laws	permits	us	to	violate	them	selectively	so
as	 to	 create	 worlds	 that	 contradict	 ours.	 Our	 next	 section	 features	 such
violations	in	action.

THE	MINI-TURING	TEST



In	1950,	Alan	Turing	asked	what	it	would	mean	for	a	computer	to	think	like	a
human.	He	suggested	a	practical	 test,	which	he	called	“the	 imitation	game,”
but	 every	 AI	 researcher	 since	 then	 has	 called	 it	 the	 “Turing	 test.”	 For	 all
practical	 purposes,	 a	 computer	 could	 be	 called	 a	 thinking	 machine	 if	 an
ordinary	human,	communicating	with	 the	computer	by	 typewriter,	could	not
tell	 whether	 he	 was	 talking	with	 a	 human	 or	 a	 computer.	 Turing	 was	 very
confident	that	this	was	within	the	realm	of	feasibility.	“I	believe	that	in	about
fifty	years’	time	it	will	be	possible	to	program	computers,”	he	wrote,	“to	make
them	 play	 the	 imitation	 game	 so	well	 that	 an	 average	 interrogator	 will	 not
have	more	 than	a	70	percent	 chance	of	making	 the	 right	 identification	after
five	minutes	of	questioning.”

Turing’s	 prediction	 was	 slightly	 off.	 Every	 year	 the	 Loebner	 Prize
competition	identifies	the	most	humanlike	“chatbot”	in	the	world,	with	a	gold
medal	and	$100,000	offered	to	any	program	that	succeeds	in	fooling	all	four
judges	 into	 thinking	 it	 is	 human.	 As	 of	 2015,	 in	 twenty-five	 years	 of
competition,	 not	 a	 single	 program	has	 fooled	 all	 the	 judges	 or	 even	 half	 of
them.

Turing	 didn’t	 just	 suggest	 the	 “imitation	 game”;	 he	 also	 proposed	 a
strategy	 to	 pass	 it.	 “Instead	 of	 trying	 to	 produce	 a	 program	 to	 simulate	 the
adult	mind,	why	not	rather	 try	 to	produce	one	which	simulates	 the	child’s?”
he	asked.	If	you	could	do	that,	then	you	could	just	teach	it	the	same	way	you
would	teach	a	child,	and	presto,	twenty	years	later	(or	less,	given	a	computer’s
greater	 speed),	 you	 would	 have	 an	 artificial	 intelligence.	 “Presumably	 the
child	brain	is	something	like	a	notebook	as	one	buys	it	from	the	stationer’s,”
he	wrote.	“Rather	little	mechanism,	and	lots	of	blank	sheets.”	He	was	wrong
about	that:	the	child’s	brain	is	rich	in	mechanisms	and	prestored	templates.

Nonetheless,	 I	 think	 that	Turing	was	on	 to	 something.	We	probably	will
not	 succeed	 in	 creating	humanlike	 intelligence	until	we	 can	 create	 childlike
intelligence,	 and	 a	 key	 component	 of	 this	 intelligence	 is	 the	 mastery	 of
causation.

How	 can	 machines	 acquire	 causal	 knowledge?	 This	 is	 still	 a	 major
challenge	 that	 will	 undoubtedly	 involve	 an	 intricate	 combination	 of	 inputs
from	 active	 experimentation,	 passive	 observation,	 and	 (not	 least)	 the
programmer—much	 the	 same	 inputs	 that	 a	 child	 receives,	 with	 evolution,
parents,	and	peers	substituted	for	the	programmer.

However,	 we	 can	 answer	 a	 slightly	 less	 ambitious	 question:	 How	 can
machines	(and	people)	represent	causal	knowledge	in	a	way	that	would	enable
them	to	access	the	necessary	information	swiftly,	answer	questions	correctly,



and	 do	 it	with	 ease,	 as	 a	 three-year-old	 child	 can?	 In	 fact,	 this	 is	 the	main
question	we	address	in	this	book.

I	call	this	the	mini-Turing	test.	The	idea	is	to	take	a	simple	story,	encode	it
on	a	machine	in	some	way,	and	then	test	to	see	if	the	machine	can	correctly
answer	causal	questions	that	a	human	can	answer.	It	is	“mini”	for	two	reasons.
First,	 it	 is	 confined	 to	 causal	 reasoning,	 excluding	 other	 aspects	 of	 human
intelligence	 such	 as	 vision	 and	 natural	 language.	 Second,	 we	 allow	 the
contestant	to	encode	the	story	in	any	convenient	representation,	unburdening
the	 machine	 of	 the	 task	 of	 acquiring	 the	 story	 from	 its	 own	 personal
experience.	Passing	 this	mini-test	has	been	my	 life’s	work—consciously	 for
the	last	twenty-five	years	and	subconsciously	even	before	that.

Obviously,	 as	 we	 prepare	 to	 take	 the	 mini-Turing	 test,	 the	 question	 of
representation	 needs	 to	 precede	 the	 question	 of	 acquisition.	 Without	 a
representation,	 we	 wouldn’t	 know	 how	 to	 store	 information	 for	 future	 use.
Even	 if	we	could	 let	our	 robot	manipulate	 its	environment	at	will,	whatever
information	we	 learned	 this	way	would	 be	 forgotten,	 unless	 our	 robot	were
endowed	with	 a	 template	 to	 encode	 the	 results	 of	 those	manipulations.	One
major	 contribution	 of	 AI	 to	 the	 study	 of	 cognition	 has	 been	 the	 paradigm
“Representation	 first,	 acquisition	 second.”	 Often	 the	 quest	 for	 a	 good
representation	 has	 led	 to	 insights	 into	 how	 the	 knowledge	 ought	 to	 be
acquired,	be	it	from	data	or	a	programmer.

When	I	describe	the	mini-Turing	test,	people	commonly	claim	that	it	can
easily	 be	 defeated	 by	 cheating.	 For	 example,	 take	 the	 list	 of	 all	 possible
questions,	store	 their	correct	answers,	and	 then	read	 them	out	 from	memory
when	asked.	There	is	no	way	to	distinguish	(so	the	argument	goes)	between	a
machine	that	stores	a	dumb	question-answer	list	and	one	that	answers	the	way
that	you	and	 I	do—that	 is,	 by	understanding	 the	question	and	producing	an
answer	 using	 a	 mental	 causal	 model.	 So	 what	 would	 the	 mini-Turing	 test
prove,	if	cheating	is	so	easy?

The	philosopher	John	Searle	introduced	this	cheating	possibility,	known	as
the	“Chinese	Room”	argument,	 in	1980	 to	challenge	Turing’s	claim	that	 the
ability	to	fake	intelligence	amounts	to	having	intelligence.	Searle’s	challenge
has	only	one	flaw:	cheating	is	not	easy;	in	fact,	it	is	impossible.	Even	with	a
small	 number	 of	 variables,	 the	 number	 of	 possible	 questions	 grows
astronomically.	 Say	 that	we	 have	 ten	 causal	 variables,	 each	 of	which	 takes
only	two	values	(0	or	1).	We	could	ask	roughly	30	million	possible	queries,
such	 as	 “What	 is	 the	 probability	 that	 the	 outcome	 is	 1,	 given	 that	 we	 see
variable	X	equals	1	and	we	make	variable	Y	equal	0	and	variable	Z	equal	1?”



If	there	were	more	variables,	or	more	than	two	states	for	each	one,	the	number
of	possibilities	would	grow	beyond	our	ability	 to	even	imagine.	Searle’s	 list
would	need	more	entries	than	the	number	of	atoms	in	the	universe.	So,	clearly
a	dumb	list	of	questions	and	answers	can	never	simulate	the	intelligence	of	a
child,	let	alone	an	adult.

Humans	 must	 have	 some	 compact	 representation	 of	 the	 information
needed	 in	 their	 brains,	 as	 well	 as	 an	 effective	 procedure	 to	 interpret	 each
question	properly	and	extract	the	right	answer	from	the	stored	representation.
To	 pass	 the	mini-Turing	 test,	 therefore,	 we	 need	 to	 equip	machines	 with	 a
similarly	efficient	representation	and	answer-extraction	algorithm.

Such	a	representation	not	only	exists	but	has	childlike	simplicity:	a	causal
diagram.	We	have	already	seen	one	example,	 the	diagram	for	 the	mammoth
hunt.	Considering	the	extreme	ease	with	which	people	can	communicate	their
knowledge	with	dot-and-arrow	diagrams,	I	believe	that	our	brains	indeed	use
a	 representation	 like	 this.	 But	 more	 importantly	 for	 our	 purposes,	 these
models	 pass	 the	mini-Turing	 test;	 no	 other	model	 is	 known	 to	 do	 so.	 Let’s
look	at	some	examples.

FIGURE	1.4	Causal	diagram	for	the	firing	squad	example.	A	and	B	represent	(the

actions	of)	Soldiers	A	and	B.

Suppose	that	a	prisoner	is	about	to	be	executed	by	a	firing	squad.	A	certain
chain	 of	 events	 must	 occur	 for	 this	 to	 happen.	 First,	 the	 court	 orders	 the
execution.	The	order	goes	to	a	captain,	who	signals	the	soldiers	on	the	firing
squad	 (A	 and	 B)	 to	 fire.	 We’ll	 assume	 that	 they	 are	 obedient	 and	 expert
marksmen,	so	 they	only	fire	on	command,	and	 if	either	one	of	 them	shoots,
the	prisoner	dies.

Figure	1.4	shows	a	diagram	representing	the	story	I	just	told.	Each	of	the
unknowns	(CO,	C,	A,	B,	D)	 is	 a	 true/false	 variable.	 For	 example,	D	 =	 true



means	the	prisoner	is	dead;	D	=	false	means	the	prisoner	is	alive.	CO	=	false
means	the	court	order	was	not	issued;	CO	=	true	means	it	was,	and	so	on.

Using	this	diagram,	we	can	start	answering	causal	questions	from	different
rungs	of	 the	 ladder.	First,	we	can	answer	questions	of	association	(i.e.,	what
one	 fact	 tells	 us	 about	 another).	 If	 the	 prisoner	 is	 dead,	 does	 that	mean	 the
court	order	was	given?	We	 (or	 a	 computer)	 can	 inspect	 the	graph,	 trace	 the
rules	behind	each	of	the	arrows,	and,	using	standard	logic,	conclude	that	the
two	 soldiers	wouldn’t	 have	 fired	without	 the	 captain’s	 command.	Likewise,
the	captain	wouldn’t	have	given	the	command	if	he	didn’t	have	the	order	 in
his	 possession.	 Therefore	 the	 answer	 to	 our	 query	 is	 yes.	 Alternatively,
suppose	we	find	out	that	A	fired.	What	does	that	tell	us	about	B?	By	following
the	arrows,	the	computer	concludes	that	B	must	have	fired	too.	(A	would	not
have	fired	if	the	captain	hadn’t	signaled,	so	B	must	have	fired	as	well.)	This	is
true	even	though	A	does	not	cause	B	(there	is	no	arrow	from	A	to	B).

Going	 up	 the	 Ladder	 of	 Causation,	 we	 can	 ask	 questions	 about
intervention.	What	if	Soldier	A	decides	on	his	own	initiative	to	fire,	without
waiting	for	the	captain’s	command?	Will	the	prisoner	be	dead	or	alive?	This
question	in	fact	already	has	a	contradictory	flavor	to	it.	I	just	told	you	that	A
only	shoots	if	commanded	to,	and	yet	now	we	are	asking	what	happens	if	he
fired	without	a	command.	If	you’re	just	using	the	rules	of	logic,	as	computers
typically	do,	the	question	is	meaningless.	As	the	robot	in	the	1960s	sci-fi	TV
series	Lost	in	Space	used	to	say	in	such	situations,	“That	does	not	compute.”

If	we	want	our	computer	to	understand	causation,	we	have	to	teach	it	how
to	 break	 the	 rules.	 We	 have	 to	 teach	 it	 the	 difference	 between	 merely
observing	 an	 event	 and	 making	 it	 happen.	 “Whenever	 you	 make	 an	 event
happen,”	we	tell	the	computer,	“remove	all	arrows	that	point	to	that	event	and
continue	 the	 analysis	 by	 ordinary	 logic,	 as	 if	 the	 arrows	 had	 never	 been
there.”	Thus,	we	erase	all	the	arrows	leading	into	the	intervened	variable	(A).
We	also	set	that	variable	manually	to	its	prescribed	value	(true).	The	rationale
for	this	peculiar	“surgery”	is	simple:	making	an	event	happen	means	that	you
emancipate	 it	 from	 all	 other	 influences	 and	 subject	 it	 to	 one	 and	 only	 one
influence—that	which	enforces	its	happening.

Figure	1.5	shows	 the	causal	diagram	that	 results	 from	our	example.	This
intervention	 leads	 inevitably	 to	 the	 prisoner’s	 death.	 That	 is	 the	 causal
function	behind	the	arrow	leading	from	A	to	D.



FIGURE	1.5.	Reasoning	about	interventions.	Soldier	A	decides	to	fire;	arrow	from	C

to	A	is	deleted,	and	A	is	assigned	the	value	true.

Note	 that	 this	 conclusion	 agrees	 with	 our	 intuitive	 judgment	 that	 A’s
unauthorized	 firing	 will	 lead	 to	 the	 prisoner’s	 death,	 because	 the	 surgery
leaves	the	arrow	from	A	to	D	intact.	Also,	our	judgment	would	be	that	B	 (in
all	 likelihood)	 did	 not	 shoot;	 nothing	 about	 A’s	 decision	 should	 affect
variables	in	the	model	that	are	not	effects	of	A’s	shot.	This	bears	repeating.	If
we	see	A	shoot,	then	we	conclude	that	B	shot	too.	But	if	A	decides	to	shoot,	or
if	we	make	A	shoot,	then	the	opposite	is	 true.	This	 is	 the	difference	between
seeing	 and	 doing.	 Only	 a	 computer	 capable	 of	 grasping	 this	 difference	 can
pass	the	mini-Turing	test.

Note	 also	 that	 merely	 collecting	 Big	 Data	 would	 not	 have	 helped	 us
ascend	 the	 ladder	 and	 answer	 the	 above	 questions.	 Assume	 that	 you	 are	 a
reporter	collecting	records	of	execution	scenes	day	after	day.	Your	data	will
consist	of	two	kinds	of	events:	either	all	five	variables	are	true,	or	all	of	them
are	 false.	 There	 is	 no	 way	 that	 this	 kind	 of	 data,	 in	 the	 absence	 of	 an
understanding	 of	 who	 listens	 to	 whom,	 will	 enable	 you	 (or	 any	 machine
learning	 algorithm)	 to	 predict	 the	 results	 of	 persuading	marksman	A	 not	 to
shoot.

Finally,	to	illustrate	the	third	rung	of	the	Ladder	of	Causation,	let’s	pose	a
counterfactual	 question.	 Suppose	 the	 prisoner	 is	 lying	 dead	 on	 the	 ground.
From	this	we	can	conclude	(using	level	one)	that	A	shot,	B	 shot,	 the	captain
gave	the	signal,	and	the	court	gave	the	order.	But	what	if	A	had	decided	not	to
shoot?	Would	the	prisoner	be	alive?	This	question	requires	us	to	compare	the
real	world	with	a	fictitious	and	contradictory	world	where	A	didn’t	shoot.	In
the	 fictitious	 world,	 the	 arrow	 leading	 into	 A	 is	 erased	 to	 liberate	 A	 from
listening	to	C.	Instead	A	is	set	to	false,	leaving	its	past	history	the	same	as	it
was	in	the	real	world.	So	the	fictitious	world	looks	like	Figure	1.6.



FIGURE	1.6.	Counterfactual	reasoning.	We	observe	that	the	prisoner	is	dead	and	ask

what	would	have	happened	if	Soldier	A	had	decided	not	to	fire.

To	pass	the	mini-Turing	test,	our	computer	must	conclude	that	the	prisoner
would	be	dead	 in	 the	 fictitious	world	 as	well,	 because	B’s	 shot	would	have
killed	him.	So	A’s	courageous	change	of	heart	would	not	have	saved	his	life.
Undoubtedly	 this	 is	 one	 reason	 firing	 squads	 exist:	 they	 guarantee	 that	 the
court’s	 order	 will	 be	 carried	 out	 and	 also	 lift	 some	 of	 the	 burden	 of
responsibility	 from	 the	 individual	 shooters,	who	can	 say	with	 a	 (somewhat)
clean	conscience	 that	 their	actions	did	not	cause	 the	prisoner’s	death	as	“he
would	have	died	anyway.”

It	may	seem	as	if	we	are	going	to	a	lot	of	trouble	to	answer	toy	questions
whose	answer	was	obvious	anyway.	I	completely	agree!	Causal	reasoning	is
easy	for	you	because	you	are	human,	and	you	were	once	a	three-year-old,	and
you	 had	 a	 marvelous	 three-year-old	 brain	 that	 understood	 causation	 better
than	any	animal	or	computer.	The	whole	point	of	the	“mini-Turing	problem”
is	 to	make	 causal	 reasoning	 feasible	 for	 computers	 too.	 In	 the	 process,	 we
might	learn	something	about	how	humans	do	it.	As	all	three	examples	show,
we	 have	 to	 teach	 the	 computer	 how	 to	 selectively	 break	 the	 rules	 of	 logic.
Computers	 are	 not	 good	 at	 breaking	 rules,	 a	 skill	 at	 which	 children	 excel.
(Cavemen	too!	The	Lion	Man	could	not	have	been	created	without	a	breach
of	the	rules	about	what	head	goes	with	what	body.)

However,	 let’s	not	get	 too	complacent	about	human	superiority.	Humans
may	have	a	much	harder	time	reaching	correct	causal	conclusions	in	a	great
many	situations.	For	example,	there	could	be	many	more	variables,	and	they
might	 not	 be	 simple	 binary	 (true/false)	 variables.	 Instead	 of	 predicting
whether	a	prisoner	is	alive	or	dead,	we	might	want	to	predict	how	much	the
unemployment	 rate	will	go	up	 if	we	 raise	 the	minimum	wage.	This	kind	of
quantitative	causal	reasoning	is	generally	beyond	the	power	of	our	intuition.
Also,	 in	 the	 firing	 squad	 example	 we	 ruled	 out	 uncertainties:	 maybe	 the
captain	gave	his	order	a	split	second	after	rifleman	A	decided	to	shoot,	maybe
rifleman	 B’s	 gun	 jammed,	 and	 so	 forth.	 To	 handle	 uncertainty	 we	 need
information	about	the	likelihood	that	the	such	abnormalities	will	occur.



Let	me	give	you	an	example	in	which	probabilities	make	all	the	difference.
It	echoes	the	public	debate	that	erupted	in	Europe	when	the	smallpox	vaccine
was	first	introduced.	Unexpectedly,	data	showed	that	more	people	died	from
smallpox	inoculations	than	from	smallpox	itself.	Naturally,	some	people	used
this	 information	 to	 argue	 that	 inoculation	 should	be	banned,	when	 in	 fact	 it
was	saving	lives	by	eradicating	smallpox.	Let’s	look	at	some	fictitious	data	to
illustrate	the	effect	and	settle	the	dispute.

Suppose	 that	 out	 of	1	million	 children,	 99	percent	 are	vaccinated,	 and	1
percent	 are	 not.	 If	 a	 child	 is	 vaccinated,	 he	 or	 she	 has	 one	 chance	 in	 one
hundred	 of	 developing	 a	 reaction,	 and	 the	 reaction	 has	 one	 chance	 in	 one
hundred	 of	 being	 fatal.	 On	 the	 other	 hand,	 he	 or	 she	 has	 no	 chance	 of
developing	 smallpox.	 Meanwhile,	 if	 a	 child	 is	 not	 vaccinated,	 he	 or	 she
obviously	has	zero	chance	of	developing	a	reaction	to	the	vaccine,	but	he	or
she	has	one	chance	in	fifty	of	developing	smallpox.	Finally,	let’s	assume	that
smallpox	is	fatal	in	one	out	of	five	cases.

I	think	you	would	agree	that	vaccination	looks	like	a	good	idea.	The	odds
of	 having	 a	 reaction	 are	 lower	 than	 the	 odds	 of	 getting	 smallpox,	 and	 the
reaction	 is	much	 less	 dangerous	 than	 the	 disease.	But	 now	 let’s	 look	 at	 the
data.	 Out	 of	 1	 million	 children,	 990,000	 get	 vaccinated,	 9,900	 have	 the
reaction,	and	99	die	from	it.	Meanwhile,	10,000	don’t	get	vaccinated,	200	get
smallpox,	and	40	die	 from	the	disease.	 In	summary,	more	children	die	 from
vaccination	(99)	than	from	the	disease	(40).

I	 can	 empathize	 with	 the	 parents	 who	 might	 march	 to	 the	 health
department	with	 signs	 saying,	 “Vaccines	 kill!”	And	 the	 data	 seem	 to	 be	 on
their	side;	the	vaccinations	indeed	cause	more	deaths	than	smallpox	itself.	But
is	 logic	 on	 their	 side?	 Should	 we	 ban	 vaccination	 or	 take	 into	 account	 the
deaths	prevented?	Figure	1.7	shows	the	causal	diagram	for	this	example.

When	 we	 began,	 the	 vaccination	 rate	 was	 99	 percent.	We	 now	 ask	 the
counterfactual	 question	 “What	 if	 we	 had	 set	 the	 vaccination	 rate	 to	 zero?”
Using	 the	 probabilities	 I	 gave	 you	 above,	 we	 can	 conclude	 that	 out	 of	 1
million	children,	20,000	would	have	gotten	smallpox,	and	4,000	would	have
died.	Comparing	the	counterfactual	world	with	the	real	world,	we	see	that	not
vaccinating	 would	 have	 cost	 the	 lives	 of	 3,861	 children	 (the	 difference
between	4,000	and	139).	We	should	thank	the	language	of	counterfactuals	for
helping	us	to	avoid	such	costs.



FIGURE	1.7.	Causal	diagram	for	the	vaccination	example.	Is	vaccination	beneficial	or

harmful?

The	main	 lesson	 for	 a	 student	 of	 causality	 is	 that	 a	 causal	model	 entails
more	than	merely	drawing	arrows.	Behind	the	arrows,	there	are	probabilities.
When	 we	 draw	 an	 arrow	 from	X	 to	Y,	 we	 are	 implicitly	 saying	 that	 some
probability	 rule	 or	 function	 specifies	 how	 Y	 would	 change	 if	 X	 were	 to
change.	We	might	know	what	the	rule	is;	more	likely,	we	will	have	to	estimate
it	 from	 data.	One	 of	 the	most	 intriguing	 features	 of	 the	Causal	Revolution,
though,	 is	 that	 in	 many	 cases	 we	 can	 leave	 those	 mathematical	 details
completely	unspecified.	Very	often	the	structure	of	the	diagram	itself	enables
us	 to	 estimate	 all	 sorts	of	 causal	 and	counterfactual	 relationships:	 simple	or
complicated,	deterministic	or	probabilistic,	linear	or	nonlinear.

From	the	computing	perspective,	our	scheme	for	passing	the	mini-Turing
test	is	also	remarkable	in	that	we	used	the	same	routine	in	all	three	examples:
translate	 the	story	into	a	diagram,	listen	to	 the	query,	perform	a	surgery	that
corresponds	to	the	given	query	(interventional	or	counterfactual;	if	the	query
is	associational	then	no	surgery	is	needed),	and	use	the	modified	causal	model
to	compute	the	answer.	We	did	not	have	to	train	the	machine	in	a	multitude	of
new	queries	each	time	we	changed	the	story.	The	approach	is	flexible	enough
to	work	whenever	we	can	draw	a	causal	diagram,	whether	 it	has	 to	do	with
mammoths,	firing	squads,	or	vaccinations.	This	is	exactly	what	we	want	for	a
causal	inference	engine:	it	is	the	kind	of	flexibility	we	enjoy	as	humans.

Of	course,	there	is	nothing	inherently	magical	about	a	diagram.	It	succeeds
because	 it	 carries	 causal	 information;	 that	 is,	 when	 we	 constructed	 the
diagram,	 we	 asked,	 “Who	 could	 directly	 cause	 the	 prisoner’s	 death?”	 or
“What	 are	 the	 direct	 effects	 of	 vaccinations?”	 Had	 we	 constructed	 the
diagram	by	asking	about	mere	associations,	it	would	not	have	given	us	these
capabilities.	For	example,	in	Figure	1.7,	if	we	reversed	the	arrow	Vaccination	
	 Smallpox,	 we	 would	 get	 the	 same	 associations	 in	 the	 data	 but	 would

erroneously	conclude	that	smallpox	affects	vaccination.

Decades’	worth	of	experience	with	these	kinds	of	questions	has	convinced



me	that,	in	both	a	cognitive	and	a	philosophical	sense,	the	idea	of	causes	and
effects	 is	 much	 more	 fundamental	 than	 the	 idea	 of	 probability.	 We	 begin
learning	 causes	 and	 effects	 before	 we	 understand	 language	 and	 before	 we
know	 any	 mathematics.	 (Research	 has	 shown	 that	 three-year-olds	 already
understand	 the	 entire	 Ladder	 of	 Causation.)	 Likewise,	 the	 knowledge
conveyed	in	a	causal	diagram	is	typically	much	more	robust	than	that	encoded
in	 a	 probability	 distribution.	For	 example,	 suppose	 that	 times	have	 changed
and	a	much	safer	and	more	effective	vaccine	is	introduced.	Suppose,	further,
that	 due	 to	 improved	 hygiene	 and	 socioeconomic	 conditions,	 the	 danger	 of
contracting	smallpox	has	diminished.	These	changes	will	drastically	affect	all
the	probabilities	 involved;	yet,	 remarkably,	 the	structure	of	 the	diagram	will
remain	 invariant.	This	 is	 the	key	secret	of	causal	modeling.	Moreover,	once
we	go	through	the	analysis	and	find	how	to	estimate	the	benefit	of	vaccination
from	 data,	 we	 do	 not	 have	 to	 repeat	 the	 entire	 analysis	 from	 scratch.	 As
discussed	 in	 the	 Introduction,	 the	 same	 estimand	 (i.e.,	 recipe	 for	 answering
the	query)	will	remain	valid	and,	as	long	as	the	diagram	does	not	change,	can
be	 applied	 to	 the	 new	data	 and	 produce	 a	 new	 estimate	 for	 our	 query.	 It	 is
because	 of	 this	 robustness,	 I	 conjecture,	 that	 human	 intuition	 is	 organized
around	causal,	not	statistical,	relations.

ON	PROBABILITIES	AND	CAUSATION

The	recognition	that	causation	is	not	reducible	to	probabilities	has	been	very
hard-won,	 both	 for	 me	 personally	 and	 for	 philosophers	 and	 scientists	 in
general.	Understanding	the	meaning	of	“cause”	has	been	the	focus	of	a	long
tradition	of	philosophers,	from	David	Hume	and	John	Stuart	Mill	in	the	1700s
and	 1800s,	 to	 Hans	 Reichenbach	 and	 Patrick	 Suppes	 in	 the	 mid-1900s,	 to
Nancy	 Cartwright,	 Wolfgang	 Spohn,	 and	 Christopher	 Hitchcock	 today.	 In
particular,	 beginning	with	Reichenbach	and	Suppes,	philosophers	have	 tried
to	 define	 causation	 in	 terms	 of	 probability,	 using	 the	 notion	 of	 “probability
raising”:	X	causes	Y	if	X	raises	the	probability	of	Y.

This	 concept	 is	 solidly	 ensconced	 in	 intuition.	 We	 say,	 for	 example,
“Reckless	driving	causes	accidents”	or	“You	will	 fail	 this	course	because	of
your	laziness,”	knowing	quite	well	that	the	antecedents	merely	tend	to	make
the	 consequences	 more	 likely,	 not	 absolutely	 certain.	 One	 would	 expect,
therefore,	that	probability	raising	should	become	the	bridge	between	rung	one
and	 rung	 two	 of	 the	 Ladder	 of	 Causation.	 Alas,	 this	 intuition	 has	 led	 to
decades	of	failed	attempts.



What	prevented	 the	attempts	 from	succeeding	was	not	 the	 idea	 itself	but
the	way	 it	was	articulated	 formally.	Almost	without	exception,	philosophers
expressed	 the	 sentence	 “X	 raises	 the	 probability	 of	 Y”	 using	 conditional
probabilities	and	wrote	P(Y	 |	X)	>	P(Y).	This	 interpretation	is	wrong,	as	you
surely	 noticed,	 because	 “raises”	 is	 a	 causal	 concept,	 connoting	 a	 causal
influence	 of	X	 over	Y.	 The	 expression	P(Y	 |	X)	 >	P(Y),	 on	 the	 other	 hand,
speaks	only	about	observations	and	means:	“If	we	see	X,	then	the	probability
of	Y	increases.”	But	this	increase	may	come	about	for	other	reasons,	including
Y	 being	 a	 cause	of	X	 or	 some	other	variable	 (Z)	being	 the	cause	of	both	of
them.	That’s	the	catch!	It	puts	the	philosophers	back	at	square	one,	trying	to
eliminate	those	“other	reasons.”

Probabilities,	as	given	by	expressions	like	P(Y	|	X),	lie	on	the	first	rung	of
the	Ladder	of	Causation	and	cannot	ever	(by	 themselves)	answer	queries	on
the	 second	 or	 third	 rung.	 Any	 attempt	 to	 “define”	 causation	 in	 terms	 of
seemingly	 simpler,	 first-rung	 concepts	 must	 fail.	 That	 is	 why	 I	 have	 not
attempted	 to	 define	 causation	 anywhere	 in	 this	 book:	 definitions	 demand
reduction,	 and	 reduction	 demands	 going	 to	 a	 lower	 rung.	 Instead,	 I	 have
pursued	 the	 ultimately	 more	 constructive	 program	 of	 explaining	 how	 to
answer	causal	queries	and	what	information	is	needed	to	answer	them.	If	this
seems	odd,	 consider	 that	mathematicians	 take	 exactly	 the	 same	approach	 to
Euclidean	geometry.	Nowhere	in	a	geometry	book	will	you	find	a	definition
of	the	terms	“point”	and	“line.”	Yet	we	can	answer	any	and	all	queries	about
them	 on	 the	 basis	 of	 Euclid’s	 axioms	 (or	 even	 better,	 the	 various	 modern
versions	of	Euclid’s	axioms).

But	 let’s	 look	 at	 this	 probability-raising	 criterion	more	 carefully	 and	 see
where	it	runs	aground.	The	issue	of	a	common	cause,	or	confounder,	of	X	and
Y	was	 among	 the	most	 vexing	 for	 philosophers.	 If	we	 take	 the	 probability-
raising	 criterion	 at	 face	 value,	 we	must	 conclude	 that	 high	 ice-cream	 sales
cause	crime	because	the	probability	of	crime	is	higher	in	months	when	more
ice	 cream	 is	 sold.	 In	 this	 particular	 case,	 we	 can	 explain	 the	 phenomenon
because	 both	 ice-cream	 sales	 and	 crime	 are	 higher	 in	 summer,	 when	 the
weather	 is	 warmer.	 Nevertheless,	 we	 are	 still	 left	 asking	 what	 general
philosophical	 criterion	could	 tell	us	 that	weather,	not	 ice-cream	sales,	 is	 the
cause.

Philosophers	 tried	 hard	 to	 repair	 the	 definition	 by	 conditioning	 on	what
they	called	“background	factors”	(another	word	for	confounders),	yielding	the
criterion	P(Y	|	X,	K	=	k)	>	P(Y	|	K	=	k),	where	K	stands	for	some	background
variables.	 In	 fact,	 this	criterion	works	 for	our	 ice-cream	example	 if	we	 treat
temperature	as	a	background	variable.	For	example,	 if	we	 look	only	at	days



when	 the	 temperature	 is	 ninety	 degrees	 (K	 =	 90),	 we	will	 find	 no	 residual
association	 between	 ice-cream	 sales	 and	 crime.	 It’s	 only	when	we	 compare
ninety-degree	 days	 to	 thirty-degree	 days	 that	 we	 get	 the	 illusion	 of	 a
probability	raising.

Still,	no	philosopher	has	been	able	to	give	a	convincingly	general	answer
to	the	question	“Which	variables	need	to	be	included	in	the	background	set	K
and	 conditioned	 on?”	 The	 reason	 is	 obvious:	 confounding	 too	 is	 a	 causal
concept	 and	 hence	 defies	 probabilistic	 formulation.	 In	 1983,	 Nancy
Cartwright	 broke	 this	 deadlock	 and	 enriched	 the	 description	 of	 the
background	 context	with	 a	 causal	 component.	She	proposed	 that	we	 should
condition	on	any	factor	that	is	“causally	relevant”	to	the	effect.	By	borrowing
a	concept	from	rung	two	of	the	Ladder	of	Causation,	she	essentially	gave	up
on	the	idea	of	defining	causes	based	on	probability	alone.	This	was	progress,
but	it	opened	the	door	to	the	criticism	that	we	are	defining	a	cause	in	terms	of
itself.

Philosophical	 disputes	 over	 the	 appropriate	 content	 of	 K	 continued	 for
more	than	two	decades	and	reached	an	impasse.	In	fact,	we	will	see	a	correct
criterion	in	Chapter	4,	and	I	will	not	spoil	the	surprise	here.	It	suffices	for	the
moment	to	say	that	this	criterion	is	practically	impossible	to	enunciate	without
causal	diagrams.

In	 summary,	probabilistic	 causality	has	 always	 foundered	on	 the	 rock	of
confounding.	Every	time	the	adherents	of	probabilistic	causation	try	to	patch
up	 the	 ship	 with	 a	 new	 hull,	 the	 boat	 runs	 into	 the	 same	 rock	 and	 springs
another	leak.	Once	you	misrepresent	“probability	raising”	in	the	language	of
conditional	probabilities,	no	amount	of	probabilistic	patching	will	get	you	to
the	 next	 rung	 of	 the	 ladder.	 As	 strange	 as	 it	 may	 sound,	 the	 notion	 of
probability	raising	cannot	be	expressed	in	terms	of	probabilities.

The	 proper	 way	 to	 rescue	 the	 probability-raising	 idea	 is	 with	 the	 do-
operator:	we	can	say	that	X	causes	Y	if	P(Y	|	do(X))	>	P(Y).	Since	intervention
is	a	rung-two	concept,	this	definition	can	capture	the	causal	interpretation	of
probability	 raising,	 and	 it	 can	 also	 be	 made	 operational	 through	 causal
diagrams.	In	other	words,	if	we	have	a	causal	diagram	and	data	on	hand	and	a
researcher	 asks	 whether	 P(Y	 |	 do(X))	 >	 P(Y),	 we	 can	 answer	 his	 question
coherently	 and	 algorithmically	 and	 thus	 decide	 if	X	 is	 a	 cause	 of	 Y	 in	 the
probability-raising	sense.

I	 usually	 pay	 a	 great	 deal	 of	 attention	 to	what	 philosophers	 have	 to	 say
about	 slippery	 concepts	 such	 as	 causation,	 induction,	 and	 the	 logic	 of
scientific	 inference.	Philosophers	have	 the	advantage	of	standing	apart	 from



the	hurly-burly	of	scientific	debate	and	the	practical	realities	of	dealing	with
data.	They	have	been	less	contaminated	than	other	scientists	by	the	anticausal
biases	of	statistics.	They	can	call	upon	a	tradition	of	thought	about	causation
that	goes	back	at	least	to	Aristotle,	and	they	can	talk	about	causation	without
blushing	or	hiding	it	behind	the	label	of	“association.”

However,	in	their	effort	to	mathematize	the	concept	of	causation—itself	a
laudable	 idea—philosophers	 were	 too	 quick	 to	 commit	 to	 the	 only
uncertainty-handling	 language	 they	 knew,	 the	 language	 of	 probability.	They
have	for	 the	most	part	gotten	over	 this	blunder	 in	 the	past	decade	or	so,	but
unfortunately	 similar	 ideas	 are	 being	 pursued	 in	 econometrics	 even	 now,
under	names	like	“Granger	causality”	and	“vector	autocorrelation.”

Now	 I	 have	 a	 confession	 to	 make:	 I	 made	 the	 same	mistake.	 I	 did	 not
always	put	causality	first	and	probability	second.	Quite	the	opposite!	When	I
started	 working	 in	 artificial	 intelligence,	 in	 the	 early	 1980s,	 I	 thought	 that
uncertainty	 was	 the	 most	 important	 thing	 missing	 from	 AI.	 Moreover,	 I
insisted	that	uncertainty	be	represented	by	probabilities.	Thus,	as	I	explain	in
Chapter	 3,	 I	 developed	 an	 approach	 to	 reasoning	 under	 uncertainty,	 called
Bayesian	networks,	 that	mimics	how	an	idealized,	decentralized	brain	might
incorporate	 probabilities	 into	 its	 decisions.	 Given	 that	 we	 see	 certain	 facts,
Bayesian	networks	can	swiftly	compute	the	likelihood	that	certain	other	facts
are	true	or	false.	Not	surprisingly,	Bayesian	networks	caught	on	immediately
in	 the	AI	 community	 and	 even	 today	 are	 considered	 a	 leading	 paradigm	 in
artificial	intelligence	for	reasoning	under	uncertainty.

Though	 I	 am	 delighted	with	 the	 ongoing	 success	 of	Bayesian	 networks,
they	 failed	 to	bridge	 the	gap	between	 artificial	 and	human	 intelligence.	 I’m
sure	you	can	figure	out	the	missing	ingredient:	causality.	True,	causal	ghosts
were	all	over	the	place.	The	arrows	invariably	pointed	from	causes	to	effects,
and	practitioners	 often	noted	 that	 diagnostic	 systems	became	unmanageable
when	 the	 direction	 of	 the	 arrows	 was	 reversed.	 But	 for	 the	 most	 part	 we
thought	that	this	was	a	cultural	habit,	or	an	artifact	of	old	thought	patterns,	not
a	central	aspect	of	intelligent	behavior.

At	 the	 time,	 I	 was	 so	 intoxicated	 with	 the	 power	 of	 probabilities	 that	 I
considered	causality	a	subservient	concept,	merely	a	convenience	or	a	mental
shorthand	 for	 expressing	 probabilistic	 dependencies	 and	 distinguishing
relevant	 variables	 from	 irrelevant	 ones.	 In	 my	 1988	 book	 Probabilistic
Reasoning	 in	 Intelligent	 Systems,	 I	 wrote,	 “Causation	 is	 a	 language	 with
which	 one	 can	 talk	 efficiently	 about	 certain	 structures	 of	 relevance
relationships.”	 The	 words	 embarrass	 me	 today,	 because	 “relevance”	 is	 so



obviously	 a	 rung-one	 notion.	 Even	 by	 the	 time	 the	 book	 was	 published,	 I
knew	 in	my	 heart	 that	 I	was	wrong.	 To	my	 fellow	 computer	 scientists,	my
book	 became	 the	 bible	 of	 reasoning	 under	 uncertainty,	 but	 I	 was	 already
feeling	like	an	apostate.

Bayesian	 networks	 inhabit	 a	 world	 where	 all	 questions	 are	 reducible	 to
probabilities,	 or	 (in	 the	 terminology	 of	 this	 chapter)	 degrees	 of	 association
between	variables;	 they	could	not	ascend	to	the	second	or	third	rungs	of	the
Ladder	 of	 Causation.	 Fortunately,	 they	 required	 only	 two	 slight	 twists	 to
climb	 to	 the	 top.	First,	 in	 1991,	 the	graph-surgery	 idea	 empowered	 them	 to
handle	both	observations	and	 interventions.	Another	 twist,	 in	1994,	brought
them	 to	 the	 third	 level	 and	made	 them	capable	 of	 handling	 counterfactuals.
But	 these	 developments	 deserve	 a	 fuller	 discussion	 in	 a	 later	 chapter.	 The
main	point	is	this:	while	probabilities	encode	our	beliefs	about	a	static	world,
causality	 tells	 us	 whether	 and	 how	 probabilities	 change	 when	 the	 world
changes,	be	it	by	intervention	or	by	act	of	imagination.



Sir	Francis	Galton	demonstrates	his	“Galton	board”	or	“quincunx”	at	the	Royal
Institution.	He	saw	this	pinball-like	apparatus	as	an	analogy	for	the	inheritance	of
genetic	traits	like	stature.	The	pinballs	accumulate	in	a	bell-shaped	curve	that	is
similar	to	the	distribution	of	human	heights.	The	puzzle	of	why	human	heights

don’t	spread	out	from	one	generation	to	the	next,	as	the	balls	would,	led	him	to	the
discovery	of	“regression	to	the	mean.”	(Source:	Drawing	by	Dakota	Harr.)
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FROM	BUCCANEERS	TO	GUINEA	PIGS:
THE	GENESIS	OF	CAUSAL	INFERENCE

And	yet	it	moves.

—ATTRIBUTED	TO	GALILEO	GALILEI	(1564–1642)

FOR	 close	 to	 two	 centuries,	 one	 of	 the	 most	 enduring	 rituals	 in	 British
science	 has	 been	 the	 Friday	 Evening	 Discourse	 at	 the	 Royal	 Institution	 of
Great	 Britain	 in	 London.	Many	 discoveries	 of	 the	 nineteenth	 century	 were
first	 announced	 to	 the	 public	 at	 this	 venue:	 Michael	 Faraday	 and	 the
principles	of	photography	 in	1839;	 J.	 J.	Thomson	and	 the	 electron	 in	1897;
James	Dewar	and	the	liquefaction	of	hydrogen	in	1904.

Pageantry	was	an	important	part	of	the	occasion;	it	was	literally	science	as
theater,	 and	 the	 audience,	 the	 cream	 of	 British	 society,	 would	 dress	 to	 the
nines	(tuxedos	with	black	tie	for	men).	At	the	appointed	hour,	a	chime	would
strike,	 and	 the	 evening’s	 speaker	 would	 be	 ushered	 into	 the	 auditorium.
Traditionally	he	would	begin	the	lecture	immediately,	without	introduction	or
preamble.	Experiments	and	live	demonstrations	were	part	of	the	spectacle.

On	February	9,	1877,	the	evening’s	speaker	was	Francis	Galton,	FRS,	first
cousin	of	Charles	Darwin,	noted	African	explorer,	inventor	of	fingerprinting,
and	 the	 very	 model	 of	 a	 Victorian	 gentleman	 scientist.	 Galton’s	 title	 was
“Typical	Laws	of	Heredity.”	His	experimental	apparatus	for	the	evening	was	a
curious	 contraption	 that	 he	 called	 a	 quincunx,	 now	 often	 called	 a	 “Galton
board.”	A	similar	game	has	often	appeared	on	 the	 televised	game	show	The



Price	Is	Right,	where	 it	 is	known	as	Plinko.	The	Galton	board	consists	of	a
triangular	array	of	pins	or	pegs,	into	which	small	metal	balls	can	be	inserted
through	an	opening	at	the	top.	The	balls	bounce	downward	from	one	row	to
the	next,	pinball	style,	before	settling	into	one	of	a	line	of	slots	at	the	bottom
(see	frontispiece).	For	any	individual	ball,	the	zigs	and	zags	to	the	left	or	right
look	completely	random.	However,	if	you	pour	a	lot	of	balls	into	the	Galton
board,	a	startling	regularity	emerges:	the	accumulated	balls	at	the	bottom	will
always	form	a	rough	approximation	to	a	bell-shaped	curve.	The	slots	nearest
the	center	will	be	stacked	high	with	balls,	and	the	number	of	the	balls	in	each
slot	gradually	tapers	down	to	zero	at	the	edges	of	the	quincunx.

This	 pattern	has	 a	mathematical	 explanation.	The	path	of	 any	 individual
ball	is	like	a	sequence	of	independent	coin	flips.	Each	time	a	ball	hits	a	pin,	it
bounces	 either	 to	 the	 left	 or	 the	 right,	 and	 from	a	distance	 its	 choice	 seems
completely	random.	The	sum	of	the	results—say,	the	excess	of	the	rights	over
the	lefts—determines	which	slot	the	ball	ends	up	in.	According	to	the	central
limit	 theorem,	 proven	 in	 1810	 by	 Pierre-Simon	 Laplace,	 any	 such	 random
process—one	that	amounts	to	a	sum	of	a	large	number	of	coin	flips—will	lead
to	 the	 same	 probability	 distribution,	 called	 the	 normal	 distribution	 (or	 bell-
shaped	 curve).	 The	 Galton	 board	 is	 simply	 a	 visual	 demonstration	 of
Laplace’s	theorem.

The	 central	 limit	 theorem	 is	 truly	 a	 miracle	 of	 nineteenth-century
mathematics.	Think	 about	 it:	 even	 though	 the	path	of	 any	 individual	 ball	 is
unpredictable,	the	path	of	1,000	balls	is	extremely	predictable—a	convenient
fact	for	the	producers	of	The	Price	Is	Right,	who	can	estimate	accurately	how
much	money	the	contestants	will	win	at	Plinko	over	the	long	run.	This	is	the
same	 law	 that	 makes	 insurance	 companies	 so	 profitable,	 despite	 the
uncertainties	in	human	affairs.

The	well-dressed	audience	at	the	Royal	Institute	must	have	wondered	what
all	 this	 had	 to	 do	with	 the	 laws	 of	 heredity,	 the	 promised	 lecture	 topic.	 To
illustrate	the	connection,	Galton	showed	them	some	data	collected	in	France
on	 the	 heights	 of	military	 recruits.	These	 also	 follow	 a	 normal	 distribution:
many	men	are	of	about	average	height,	with	a	gradually	diminishing	number
who	 are	 either	 extremely	 tall	 or	 extremely	 short.	 In	 fact,	 it	 does	 not	matter
whether	 you	 are	 talking	 about	 1,000	military	 recruits	 or	 1,000	 balls	 in	 the
Galton	 board:	 the	 numbers	 in	 each	 slot	 (or	 height	 category)	 are	 almost	 the
same.

Thus,	 to	Galton,	 the	quincunx	was	a	model	 for	 the	 inheritance	of	stature
or,	indeed,	many	other	genetic	traits.	It	 is	a	causal	model.	In	simplest	terms,



Galton	believed	the	balls	“inherit”	their	position	in	the	quincunx	in	the	same
way	that	humans	inherit	their	stature.

But	if	we	accept	this	model—provisionally—it	poses	a	puzzle,	which	was
Galton’s	 chief	 subject	 for	 the	 evening.	 The	 width	 of	 the	 bell-shaped	 curve
depends	 on	 the	 number	 of	 rows	 of	 pegs	 placed	 between	 the	 top	 and	 the
bottom.	Suppose	we	doubled	the	number	of	rows.	This	would	create	a	model
for	two	generations	of	inheritance,	with	the	first	half	of	the	rows	representing
the	 first	generation	and	 the	 second	half	 representing	 the	second.	You	would
inevitably	find	more	variation	in	the	second	generation	than	in	the	first,	and	in
succeeding	generations,	the	bell-shaped	curve	would	get	wider	and	wider	still.

But	this	is	not	what	happens	with	actual	human	stature.	In	fact,	the	width
of	 the	distribution	of	human	heights	 stays	 relatively	constant	over	 time.	We
didn’t	have	nine-foot	humans	a	century	ago,	and	we	still	don’t.	What	explains
the	 stability	 of	 the	 population’s	 genetic	 endowment?	 Galton	 had	 been
puzzling	over	this	enigma	for	roughly	eight	years,	since	the	publication	of	his
book	Hereditary	Genius	in	1869.

As	 the	 title	 of	 the	book	 suggests,	Galton’s	 true	 interest	was	not	 carnival
games	or	human	stature	but	human	intelligence.	As	a	member	of	an	extended
family	with	a	remarkable	amount	of	scientific	genius,	Galton	naturally	would
have	 liked	 to	 prove	 that	 genius	 runs	 in	 families.	 And	 he	 had	 set	 out	 to	 do
exactly	 that	 in	 his	 book.	 He	 painstakingly	 compiled	 pedigrees	 of	 605
“eminent”	Englishmen	 from	 the	preceding	 four	centuries.	But	he	 found	 that
the	sons	and	fathers	of	 these	eminent	men	were	somewhat	 less	eminent	and
the	grandparents	and	grandchildren	less	eminent	still.

It’s	easy	enough	for	us	now	to	find	flaws	in	Galton’s	program.	What,	after
all,	is	the	definition	of	eminence?	And	isn’t	it	possible	that	people	in	eminent
families	 are	 successful	 because	 of	 their	 privilege	 rather	 than	 their	 talent?
Though	Galton	was	aware	of	such	difficulties,	he	pursued	this	futile	quest	for
a	genetic	explanation	at	an	increasing	pace	and	determination.

Still,	Galton	was	on	to	something,	which	became	more	apparent	once	he
started	looking	at	features	like	height,	which	are	easier	to	measure	and	more
strongly	linked	to	heredity	than	“eminence.”	Sons	of	tall	men	tend	to	be	taller
than	 average—but	not	 as	 tall	 as	 their	 fathers.	Sons	of	 short	men	 tend	 to	 be
shorter	than	average—but	not	as	short	as	their	fathers.	Galton	first	called	this
phenomenon	“reversion”	and	later	“regression	toward	mediocrity.”	It	can	be
noted	in	many	other	settings.	If	students	take	two	different	standardized	tests
on	the	same	material,	 the	ones	who	scored	high	on	the	first	 test	will	usually
score	higher	 than	average	on	 the	second	 test	but	not	as	high	as	 they	did	 the



first	 time.	 This	 phenomenon	 of	 regression	 to	 the	mean	 is	 ubiquitous	 in	 all
facets	of	life,	education,	and	business.	For	instance,	in	baseball	the	Rookie	of
the	Year	(a	player	who	does	unexpectedly	well	in	his	first	season)	often	hits	a
“sophomore	slump,”	in	which	he	does	not	do	quite	as	well.

Galton	didn’t	know	all	of	this,	and	he	thought	he	had	stumbled	onto	a	law
of	heredity	 rather	 than	a	 law	of	statistics.	He	believed	 that	 regression	 to	 the
mean	must	have	some	cause,	and	in	his	Royal	Institution	lecture	he	illustrated
his	point.	He	showed	his	audience	a	two-layered	quincunx	(Figure	2.1).

After	 passing	 through	 the	 first	 array	 of	 pegs,	 the	 balls	 passed	 through
sloping	chutes	 that	moved	them	closer	 to	 the	center	of	 the	board.	Then	they
would	pass	through	a	second	array	of	pegs.	Galton	showed	triumphantly	that
the	chutes	exactly	compensated	for	the	tendency	of	the	normal	distribution	to
spread	out.	This	time,	the	bell-shaped	probability	distribution	kept	a	constant
width	from	generation	to	generation.

FIGURE	2.1.	The	Galton	board,	used	by	Francis	Galton	as	an	analogy	for	the

inheritance	of	human	heights.	(a)	When	many	balls	are	dropped	through	the
pinball-like	apparatus,	their	random	bounces	cause	them	to	pile	up	in	a	bell-shaped
curve.	(b)	Galton	noted	that	on	two	passes,	A	and	B,	through	the	Galton	board	(the
analogue	of	two	generations)	the	bell-shaped	curve	got	wider.	(c)	To	counteract	this
tendency,	he	installed	chutes	to	move	the	“second	generation”	back	closer	to	the
center.	The	chutes	are	Galton’s	causal	explanation	for	regression	to	the	mean.

(Source:	Francis	Galton,	Natural	Inheritance	[1889].)

Thus,	 Galton	 conjectured,	 regression	 toward	 the	 mean	 was	 a	 physical
process,	 nature’s	 way	 of	 ensuring	 that	 the	 distribution	 of	 height	 (or
intelligence)	remained	the	same	from	generation	to	generation.	“The	process
of	 reversion	 cooperates	with	 the	 general	 law	 of	 deviation,”	Galton	 told	 his
audience.	He	compared	it	to	Hooke’s	law,	the	physical	law	that	describes	the
tendency	of	a	spring	to	return	to	its	equilibrium	length.

Keep	 in	 mind	 the	 date.	 In	 1877,	 Galton	 was	 in	 pursuit	 of	 a	 causal



explanation	and	thought	that	regression	to	the	mean	was	a	causal	process,	like
a	law	of	physics.	He	was	mistaken,	but	he	was	far	from	alone.	Many	people
continue	to	make	the	same	mistake	to	this	day.	For	example,	baseball	experts
always	 look	 for	 causal	 explanations	 for	 a	 player’s	 sophomore	 slump.	 “He’s
gotten	overconfident,”	 they	complain,	or	“the	other	players	have	figured	out
his	weaknesses.”	They	may	be	right,	but	the	sophomore	slump	does	not	need
a	causal	explanation.	It	will	happen	more	often	than	not	by	the	laws	of	chance
alone.

The	modern	statistical	explanation	 is	quite	 simple.	As	Daniel	Kahneman
summarizes	it	in	his	book	Thinking,	Fast	and	Slow,	“Success	=	talent	+	luck.
Great	success	=	a	little	more	talent	+	a	lot	of	luck.”	A	player	who	wins	Rookie
of	the	Year	is	probably	more	talented	than	average,	but	he	also	(probably)	had
a	 lot	 of	 luck.	 Next	 season,	 he	 is	 not	 likely	 to	 be	 so	 lucky,	 and	 his	 batting
average	will	be	lower.

By	 1889,	 Galton	 had	 figured	 this	 out,	 and	 in	 the	 process—partly
disappointed	but	also	fascinated—he	took	the	first	huge	step	toward	divorcing
statistics	from	causation.	His	reasoning	is	subtle	but	worth	making	the	effort
to	understand.	It	is	the	newborn	discipline	of	statistics	uttering	its	first	cry.

Galton	 had	 started	 gathering	 a	 variety	 of	 “anthropometric”	 statistics:
height,	 forearm	 length,	 head	 length,	 head	width,	 and	 so	on.	He	noticed	 that
when	 he	 plotted	 height	 against	 forearm	 length,	 for	 instance,	 the	 same
phenomenon	 of	 regression	 to	 the	 mean	 took	 place.	 Tall	 men	 usually	 had
longer-than-average	 forearms—but	not	 as	 far	 above	 average	 as	 their	 height.
Clearly	height	is	not	a	cause	of	forearm	length,	or	vice	versa.	If	anything,	both
are	 caused	by	genetic	 inheritance.	Galton	 started	using	 a	 new	word	 for	 this
kind	of	relationship:	height	and	forearm	length	were	“co-related.”	Eventually,
he	opted	for	the	more	normal	English	word	“correlated.”

Later	he	realized	an	even	more	startling	fact:	in	generational	comparisons,
the	temporal	order	could	be	reversed.	That	is,	the	fathers	of	sons	also	revert	to
the	mean.	The	father	of	a	son	who	is	taller	than	average	is	likely	to	be	taller
than	average	but	shorter	 than	his	son	(see	Figure	2.2).	Once	Galton	realized
this,	he	had	to	give	up	any	idea	of	a	causal	explanation	for	regression,	because
there	is	no	way	that	the	sons’	heights	could	cause	the	fathers’	heights.

This	 realization	 may	 sound	 paradoxical	 at	 first.	 “Wait!”	 you’re	 saying.
“You’re	 telling	 me	 that	 tall	 dads	 usually	 have	 shorter	 sons,	 and	 tall	 sons
usually	 have	 shorter	 dads.	How	can	 both	 of	 those	 statements	 be	 true?	How
can	a	son	be	both	taller	and	shorter	than	his	father?”



FIGURE	2.2.	The	scatter	plot	shows	a	data	set	of	heights,	with	each	dot	representing

the	height	of	a	father	(on	the	x-axis)	and	his	son	(on	the	y-axis).	The	dashed	line
coincides	with	the	major	axis	of	the	ellipse,	while	the	solid	line	(called	the

regression	line)	connects	the	rightmost	and	leftmost	points	on	the	ellipse.	The
difference	between	them	accounts	for	regression	to	the	mean.	For	example,	the
black	star	shows	that	72″	fathers	have,	on	the	average,	71″	sons.	(That	is,	the

average	height	of	all	the	data	points	in	the	vertical	strip	is	71″.)	The	horizontal	strip
and	white	star	show	that	the	same	loss	of	height	occurs	in	the	noncausal	direction
(backward	in	time).	(Source:	Figure	by	Maayan	Harel,	with	a	contribution	from

Christopher	Boucher.)

The	 answer	 is	 that	we	 are	 talking	 not	 about	 an	 individual	 father	 and	 an
individual	son	but	about	two	populations.	We	start	with	the	population	of	six-
foot	 fathers.	 Because	 they	 are	 taller	 than	 average,	 their	 sons	 will	 regress
toward	 the	 mean;	 let’s	 say	 their	 sons	 average	 five	 feet,	 eleven	 inches.
However,	 the	 population	 of	 father-son	 pairs	with	 six-foot	 fathers	 is	 not	 the
same	 as	 the	 population	 of	 father-son	 pairs	 with	 five-foot-eleven-inch	 sons.
Every	 father	 in	 the	 first	 group	 is	 by	 definition	 six	 feet	 tall.	 But	 the	 second
group	will	have	a	few	fathers	who	are	taller	than	six	feet	and	a	lot	of	fathers
who	are	 shorter	 than	six	 feet.	Their	average	height	will	be	shorter	 than	 five



feet,	eleven	inches,	again	displaying	regression	to	the	mean.

Another	way	 to	 illustrate	 regression	 is	 to	 use	 a	 diagram	 called	 a	 scatter
plot	(Figure	2.2).	Each	father-son	pair	 is	 represented	by	one	dot,	with	 the	x-
coordinate	 being	 the	 father’s	 height	 and	 the	 y-coordinate	 being	 the	 son’s
height.	So	a	father	and	son	who	are	both	five	feet,	nine	inches	(or	sixty-nine
inches)	 will	 be	 represented	 by	 a	 dot	 at	 (69,	 69),	 right	 at	 the	 center	 of	 the
scatter	plot.	A	father	who	is	six	feet	(or	seventy-two	inches)	with	a	son	who	is
five-foot-eleven	(or	seventy-one	 inches)	will	be	 represented	by	a	dot	at	 (72,
71),	in	the	northeast	corner	of	the	scatter	plot.	Notice	that	the	scatter	plot	has	a
roughly	 elliptical	 shape—a	 fact	 that	 was	 crucial	 to	 Galton’s	 analysis	 and
characteristic	of	bell-shaped	distributions	with	two	variables.

As	shown	in	Figure	2.2,	the	father-son	pairs	with	seventy-two-inch	fathers
lie	in	a	vertical	slice	centered	at	72;	the	father-son	pairs	with	seventy-one-inch
sons	lie	in	a	horizontal	slice	centered	at	71.	Here	is	visual	proof	that	these	are
two	different	populations.	 If	we	focus	only	on	 the	first	population,	 the	pairs
with	 seventy-two-inch	 fathers,	 we	 can	 ask,	 “How	 tall	 are	 the	 sons	 on
average?”	It’s	the	same	as	asking	where	the	center	of	that	vertical	slice	is,	and
by	eye	you	can	see	that	the	center	is	about	71.	If	we	focus	only	on	the	second
population	with	seventy-one-inch	sons,	we	can	ask,	“How	tall	are	the	fathers
on	average?”	This	is	the	same	as	asking	for	the	center	of	the	horizontal	slice,
and	by	eye	you	can	see	that	its	center	is	about	70.3.

We	 can	 go	 farther	 and	 think	 about	 doing	 the	 same	 procedure	 for	 every
vertical	slice.	That’s	equivalent	to	asking,	“For	fathers	of	height	x,	what	is	the
best	 prediction	 of	 the	 son’s	 height	 (y)?”	 Alternatively,	 we	 can	 take	 each
horizontal	slice	and	ask	where	its	center	is:	for	sons	of	height	y,	what	 is	 the
best	“prediction”	(or	retrodiction)	of	the	father’s	height?

As	he	thought	about	this	question,	Galton	stumbled	on	an	important	fact:
the	 predictions	 always	 fall	 on	 a	 line,	 which	 he	 called	 the	 regression	 line,
which	 is	 less	 steep	 than	 the	major	 axis	 (or	 axis	 of	 symmetry)	of	 the	 ellipse
(Figure	2.3).	In	fact	there	are	two	such	lines,	depending	on	which	variable	is
being	 predicted	 and	 which	 is	 being	 used	 as	 evidence.	 You	 can	 predict	 the
son’s	 height	 based	 on	 the	 father’s	 or	 the	 father’s	 based	 on	 the	 son’s.	 The
situation	 is	 completely	 symmetric.	 Once	 again	 this	 shows	 that	 where
regression	to	the	mean	is	concerned,	there	is	no	difference	between	cause	and
effect.

The	 slope	 of	 the	 regression	 enables	 you	 to	 predict	 the	 value	 of	 one
variable,	given	that	you	know	the	value	of	the	other.	In	the	context	of	Galton’s
problem,	 a	 slope	 of	 0.5	would	mean	 that	 each	 extra	 inch	 of	 height	 for	 the



father	would	 correspond,	 on	 average,	 to	 an	 extra	 half	 inch	 for	 the	 son,	 and
vice	 versa.	 A	 slope	 of	 1	 would	 be	 perfect	 correlation,	 which	 means	 every
extra	inch	for	the	father	is	passed	deterministically	to	the	son,	who	would	also
be	an	inch	taller.	The	slope	can	never	be	greater	than	1;	if	it	were,	the	sons	of
tall	fathers	would	be	taller	on	average,	and	the	sons	of	short	fathers	would	be
shorter—and	 this	 would	 force	 the	 distribution	 of	 heights	 to	 become	 wider
over	time.	After	a	few	generations	we	would	start	having	9-foot	people	and	2-
foot	people,	which	is	not	observed	in	nature.	So,	provided	the	distribution	of
heights	 stays	 the	 same	 from	 one	 generation	 to	 the	 next,	 the	 slope	 of	 the
regression	line	cannot	exceed	1.

FIGURE	2.3.	Galton’s	regression	lines.	Line	OM	gives	the	best	prediction	of	a	son’s

height	if	you	know	the	height	of	the	father;	line	ON	gives	the	best	prediction	of	a
father’s	height	if	you	know	the	height	of	the	son.	Neither	is	the	same	as	the	major
axis	(axis	of	symmetry)	of	the	scatter	plot.	(Source:	Francis	Galton,	Journal	of	the
Anthropological	Institute	of	Great	Britain	and	Ireland	[1886],	246–263,	Plate	X.)

The	 law	 of	 regression	 applies	 even	 when	 we	 correlate	 two	 different
quantities,	 like	height	and	IQ.	If	you	plot	one	quantity	against	the	other	in	a
scatter	 plot	 and	 rescale	 the	 two	 axes	 properly,	 then	 the	 slope	 of	 the	 best-fit
line	 always	 enjoys	 the	 same	 properties.	 It	 equals	 1	 only	when	 one	 quantity
can	 predict	 the	 other	 precisely;	 it	 is	 0	whenever	 the	 prediction	 is	 no	 better
than	a	random	guess.	The	slope	(after	scaling)	is	the	same	no	matter	whether
you	plot	X	against	Y	or	Y	against	X.	 In	other	words,	 the	slope	 is	completely
agnostic	 as	 to	 cause	 and	 effect.	One	variable	 could	 cause	 the	other,	 or	 they
could	both	be	effects	of	a	 third	cause;	 for	 the	purpose	of	prediction,	 it	does
not	matter.

For	the	first	time,	Galton’s	idea	of	correlation	gave	an	objective	measure,
independent	 of	 human	 judgment	 or	 interpretation,	 of	 how	 two	variables	 are
related	to	one	another.	The	two	variables	can	stand	for	height,	intelligence,	or
income;	 they	 can	 stand	 in	 causal,	 neutral,	 or	 reverse-causal	 relation.	 The
correlation	will	always	reflect	 the	degree	of	cross	predictability	between	the



two	variables.	Galton’s	disciple	Karl	Pearson	later	derived	a	formula	for	 the
slope	 of	 the	 (properly	 rescaled)	 regression	 line	 and	 called	 it	 the	 correlation
coefficient.	This	 is	 still	 the	 first	 number	 that	 statisticians	 all	 over	 the	world
compute	when	 they	want	 to	know	how	strongly	 two	different	variables	 in	a
data	set	are	related.	Galton	and	Pearson	must	have	been	thrilled	to	find	such	a
universal	way	of	describing	the	relationships	between	random	variables.	For
Pearson,	 especially,	 the	 slippery	 old	 concepts	 of	 cause	 and	 effect	 seemed
outdated	and	unscientific,	compared	 to	 the	mathematically	clear	and	precise
concept	of	a	correlation	coefficient.

GALTON	AND	THE	ABANDONED	QUEST

It	 is	 an	 irony	 of	 history	 that	 Galton	 started	 out	 in	 search	 of	 causation	 and
ended	up	discovering	correlation,	a	relationship	that	is	oblivious	of	causation.
Even	 so,	 hints	 of	 causal	 thinking	 remained	 in	his	writing.	 “It	 is	 easy	 to	 see
that	correlation	[between	the	sizes	of	two	organs]	must	be	the	consequence	of
the	 variations	 of	 the	 two	 organs	 being	 partly	 due	 to	 common	 causes,”	 he
wrote	in	1889.

The	 first	 sacrifice	 on	 the	 altar	 of	 correlation	 was	 Galton’s	 elaborate
machinery	to	explain	the	stability	of	the	population’s	genetic	endowment.	The
quincunx	simulated	the	creation	of	variations	in	height	and	their	transmission
from	one	generation	to	the	next.	But	Galton	had	to	invent	the	inclined	chutes
in	 the	 quincunx	 specifically	 to	 rein	 in	 the	 ever-growing	 diversity	 in	 the
population.	 Having	 failed	 to	 find	 a	 satisfactory	 biological	 mechanism	 to
account	for	this	restoring	force,	Galton	simply	abandoned	the	effort	after	eight
years	 and	 turned	 his	 attention	 to	 the	 siren	 song	 of	 correlation.	 Historian
Stephen	 Stigler,	 who	 has	 written	 extensively	 about	 Galton,	 noticed	 this
sudden	shift	in	Galton’s	aims	and	aspirations:	“What	was	silently	missing	was
Darwin,	 the	chutes,	 and	all	 the	 ‘survival	of	 the	 fittest.’…	In	 supreme	 irony,
what	 had	 started	 out	 as	 an	 attempt	 to	 mathematize	 the	 framework	 of	 the
Origin	of	Species	ended	with	the	essence	of	that	great	work	being	discarded
as	unnecessary!”

But	 to	 us,	 in	 the	 modern	 era	 of	 causal	 inference,	 the	 original	 problem
remains.	How	do	we	explain	the	stability	of	the	population,	despite	Darwinian
variations	that	one	generation	bestows	on	the	next?

Looking	back	on	Galton’s	machine	in	the	light	of	causal	diagrams,	the	first
thing	I	notice	is	that	the	machine	was	wrongly	constructed.	The	ever-growing
dispersion,	which	begged	Galton	for	a	counterforce,	should	never	have	been



there	in	the	first	place.	Indeed,	if	we	trace	a	ball	dropping	from	one	level	to
the	 next	 in	 the	 quincunx,	 we	 see	 that	 the	 displacement	 at	 the	 next	 level
inherits	the	sum	total	of	variations	bestowed	upon	it	by	all	the	pegs	along	the
way.	This	stands	in	blatant	contradiction	to	Kahneman’s	equations:

Success	=	talent	+	luck

Great	success	=	A	little	more	talent	+	a	lot	of	luck.

According	to	these	equations,	success	in	generation	2	does	not	inherit	the	luck
of	generation	1.	Luck,	by	its	very	definition,	is	a	transitory	occurrence;	hence
it	 has	 no	 impact	 on	 future	 generations.	 But	 such	 transitory	 behavior	 is
incompatible	with	Galton’s	machine.

To	 compare	 these	 two	 conceptions	 side	 by	 side,	 let	 us	 draw	 their
associated	causal	diagrams.	In	Figure	2.4(a)	(Galton’s	conception),	success	is
transmitted	 across	 generations,	 and	 luck	 variations	 accumulate	 indefinitely.
This	 is	 perhaps	 natural	 if	 “success”	 is	 equated	 to	 wealth	 or	 eminence.
However,	for	the	inheritance	of	physical	characteristics	like	stature,	we	must
replace	 Galton’s	 model	 with	 that	 in	 Figure	 2.4(b).	 Here	 only	 the	 genetic
component,	shown	here	as	talent,	is	passed	down	from	one	generation	to	the
next.	 Luck	 affects	 each	 generation	 independently,	 in	 such	 a	 way	 that	 the
chance	factors	 in	one	generation	have	no	way	of	affecting	 later	generations,
either	directly	or	indirectly.



FIGURE	2.4.	Two	models	of	inheritance.	(a)	The	Galton	board	model,	in	which	luck

accrues	from	generation	to	generation,	leading	to	an	ever-wider	distribution	of
success.	(b)	A	genetic	model,	in	which	luck	does	not	accrue,	leading	to	a	constant

distribution	of	success.

Both	of	 these	models	are	compatible	with	 the	bell-shaped	distribution	of
heights.	 But	 the	 first	 model	 is	 not	 compatible	 with	 the	 stability	 of	 the
distribution	 of	 heights	 (or	 success).	 The	 second	 model,	 on	 the	 other	 hand,
shows	that	to	explain	the	stability	of	success	from	one	generation	to	the	next,
we	only	need	explain	the	stability	of	the	genetic	endowment	of	the	population
(talent).	That	stability,	now	called	the	Hardy-Weinberg	equilibrium,	received
a	 satisfactory	 mathematical	 explanation	 in	 the	 work	 of	 G.	 H.	 Hardy	 and
Wilhelm	Weinberg	 in	1908.	And	yes,	 they	used	yet	another	causal	model—
the	Mendelian	theory	of	inheritance.

In	 retrospect,	 Galton	 could	 not	 have	 anticipated	 the	 work	 of	 Mendel,
Hardy,	 and	 Weinberg.	 In	 1877,	 when	 Galton	 gave	 his	 lecture,	 Gregor
Mendel’s	work	of	1866	had	been	forgotten	(it	was	only	rediscovered	in	1900),
and	the	mathematics	of	Hardy	and	Weinberg’s	proofs	would	likely	have	been
beyond	 him.	But	 it	 is	 interesting	 to	 note	 how	 close	 he	 came	 to	 finding	 the
right	framework	and	also	how	the	causal	diagram	makes	it	easy	to	zero	in	on
his	mistaken	assumption:	the	transmission	of	luck	from	one	generation	to	the



next.	 Unfortunately,	 he	 was	 led	 astray	 by	 his	 beautiful	 but	 flawed	 causal
model,	 and	 later,	 having	 discovered	 the	 beauty	 of	 correlation,	 he	 came	 to
believe	that	causality	was	no	longer	needed.

As	a	final	personal	comment	on	Galton’s	story,	I	confess	to	committing	a
cardinal	sin	of	history	writing,	one	of	many	sins	I	will	commit	in	this	book.	In
the	 1960s,	 it	 became	 unfashionable	 to	 write	 history	 from	 the	 viewpoint	 of
modern-day	 science,	 as	 I	 have	 done	 above.	 “Whig	 history”	was	 the	 epithet
used	 to	 mock	 the	 hindsighted	 style	 of	 history	 writing,	 which	 focused	 on
successful	 theories	 and	 experiments	 and	 gave	 little	 credit	 to	 failed	 theories
and	dead	ends.	The	modern	style	of	history	writing	became	more	democratic,
treating	 chemists	 and	 alchemists	 with	 equal	 respect	 and	 insisting	 on
understanding	all	theories	in	the	social	context	of	their	own	time.

When	 it	 comes	 to	 explaining	 the	 expulsion	 of	 causality	 from	 statistics,
however,	I	accept	the	mantle	of	Whig	historian	with	pride.	There	simply	is	no
other	way	to	understand	how	statistics	became	a	model-blind	data-reduction
enterprise,	except	by	putting	on	our	causal	lenses	and	retelling	the	stories	of
Galton	and	Pearson	in	the	light	of	the	new	science	of	cause	and	effect.	In	fact,
by	so	doing,	I	rectify	the	distortions	introduced	by	mainstream	historians	who,
lacking	causal	vocabulary,	marvel	 at	 the	 invention	of	 correlation	and	 fail	 to
note	its	casualty—the	death	of	causation.

PEARSON:	THE	WRATH	OF	THE	ZEALOT

It	 remained	 to	 Galton’s	 disciple,	 Karl	 Pearson,	 to	 complete	 the	 task	 of
expunging	causation	from	statistics.	Yet	even	he	was	not	entirely	successful.

Reading	Galton’s	Natural	Inheritance	was	one	of	the	defining	moments	of
Pearson’s	 life:	“I	 felt	 like	a	buccaneer	of	Drake’s	days—one	of	 the	order	of
men	 ‘not	 quite	 pirates,	 but	 with	 decidedly	 piratical	 tendencies,’	 as	 the
dictionary	 has	 it!”	 he	 wrote	 in	 1934.	 “I	 interpreted…	Galton	 to	 mean	 that
there	 was	 a	 category	 broader	 than	 causation,	 namely	 correlation,	 of	 which
causation	 was	 only	 the	 limit,	 and	 that	 this	 new	 conception	 of	 correlation
brought	psychology,	anthropology,	medicine	and	sociology	in	large	part	 into
the	field	of	mathematical	treatment.	It	was	Galton	who	first	freed	me	from	the
prejudice	that	sound	mathematics	could	only	be	applied	to	natural	phenomena
under	the	category	of	causation.”

In	 Pearson’s	 eyes,	 Galton	 had	 enlarged	 the	 vocabulary	 of	 science.
Causation	 was	 reduced	 to	 nothing	 more	 than	 a	 special	 case	 of	 correlation



(namely,	 the	 case	 where	 the	 correlation	 coefficient	 is	 1	 or	 –1	 and	 the
relationship	 between	 x	 and	 y	 is	 deterministic).	 He	 expresses	 his	 view	 of
causation	 with	 great	 clarity	 in	 The	 Grammar	 of	 Science	 (1892):	 “That	 a
certain	 sequence	 has	 occurred	 and	 reoccurred	 in	 the	 past	 is	 a	 matter	 of
experience	to	which	we	give	expression	in	the	concept	causation.…	Science
in	no	 case	 can	demonstrate	 any	 inherent	necessity	 in	 a	 sequence,	 nor	prove
with	absolute	certainty	that	it	must	be	repeated.”	To	summarize,	causation	for
Pearson	 is	 only	 a	 matter	 of	 repetition	 and,	 in	 the	 deterministic	 sense,	 can
never	be	proven.	As	 for	 causality	 in	 a	nondeterministic	world,	Pearson	was
even	more	dismissive:	“the	ultimate	scientific	statement	of	description	of	the
relation	between	two	things	can	always	be	thrown	back	upon…	a	contingency
table.”	In	other	words,	data	is	all	there	is	to	science.	Full	stop.	In	this	view,	the
notions	 of	 intervention	 and	 counterfactuals	 discussed	 in	 Chapter	 1	 do	 not
exist,	and	the	lowest	rung	of	the	Ladder	of	Causation	is	all	that	is	needed	for
doing	science.

The	mental	leap	from	Galton	to	Pearson	is	breathtaking	and	indeed	worthy
of	a	buccaneer.	Galton	had	proved	only	that	one	phenomenon—regression	to
the	mean—did	not	require	a	causal	explanation.	Now	Pearson	was	completely
removing	causation	from	science.	What	made	him	take	this	leap?

Historian	 Ted	 Porter,	 in	 his	 biography	 Karl	 Pearson,	 describes	 how
Pearson’s	skepticism	about	causation	predated	his	 reading	of	Galton’s	book.
Pearson	had	been	wrestling	with	the	philosophical	foundation	of	physics	and
wrote	 (for	 example),	 “Force	 as	 a	 cause	 of	 motion	 is	 exactly	 on	 the	 same
footing	as	a	tree-god	as	a	cause	of	growth.”	More	generally,	Pearson	belonged
to	a	philosophical	school	called	positivism,	which	holds	that	the	universe	is	a
product	 of	 human	 thought	 and	 that	 science	 is	 only	 a	 description	 of	 those
thoughts.	Thus	 causation,	 construed	 as	 an	objective	process	 that	 happens	 in
the	world	 outside	 the	 human	 brain,	 could	 not	 have	 any	 scientific	meaning.
Meaningful	thoughts	can	only	reflect	patterns	of	observations,	and	these	can
be	completely	described	by	correlations.	Having	decided	that	correlation	was
a	more	 universal	 descriptor	 of	 human	 thought	 than	 causation,	 Pearson	was
prepared	to	discard	causation	completely.

Porter	 paints	 a	 vivid	 picture	 of	 Pearson	 throughout	 his	 life	 as	 a	 self-
described	Schwärmer,	a	German	word	that	translates	as	“enthusiast”	but	can
also	 be	 interpreted	 more	 strongly	 as	 “zealot.”	 After	 graduating	 from
Cambridge	in	1879,	Pearson	spent	a	year	abroad	in	Germany	and	fell	so	much
in	love	with	its	culture	that	he	promptly	changed	his	name	from	Carl	to	Karl.
He	was	a	socialist	long	before	it	became	popular,	and	he	wrote	to	Karl	Marx
in	1881,	offering	to	translate	Das	Kapital	into	English.	Pearson,	arguably	one



of	England’s	first	feminists,	started	the	Men’s	and	Women’s	Club	in	London
for	discussions	of	“the	woman	question.”	He	was	concerned	about	women’s
subordinate	 position	 in	 society	 and	 advocated	 for	 them	 to	 be	 paid	 for	 their
work.	He	was	extremely	passionate	about	 ideas	while	at	 the	same	time	very
cerebral	 about	 his	 passions.	 It	 took	 him	 nearly	 half	 a	 year	 to	 persuade	 his
future	wife,	Maria	Sharpe,	to	marry	him,	and	their	letters	suggest	that	she	was
frankly	terrified	of	not	living	up	to	his	high	intellectual	ideals.

When	Pearson	found	Galton	and	his	correlations,	he	at	last	found	a	focus
for	his	passions:	an	idea	that	he	believed	could	transform	the	world	of	science
and	bring	mathematical	 rigor	 to	 fields	 like	biology	and	psychology.	And	he
moved	 with	 a	 buccaneer’s	 sense	 of	 purpose	 toward	 accomplishing	 this
mission.	His	 first	paper	on	statistics	was	published	 in	1893,	 four	years	after
Galton’s	 discovery	 of	 correlation.	 By	 1901	 he	 had	 founded	 a	 journal,
Biometrika,	 which	 remains	 one	 of	 the	 most	 influential	 statistical	 journals
(and,	somewhat	heretically,	published	my	first	full	paper	on	causal	diagrams
in	 1995).	 By	 1903,	 Pearson	 had	 secured	 a	 grant	 from	 the	 Worshipful
Company	of	Drapers	to	start	a	Biometrics	Lab	at	University	College	London.
In	1911	it	officially	became	a	department	when	Galton	passed	away	and	left
an	endowment	for	a	professorship	(with	the	stipulation	that	Pearson	be	its	first
holder).	 For	 at	 least	 two	 decades,	 Pearson’s	 Biometrics	 Lab	was	 the	world
center	of	statistics.

Once	Pearson	held	 a	 position	of	 power,	 his	 zealotry	 came	out	more	 and
more	 clearly.	 As	 Porter	 writes	 in	 his	 biography,	 “Pearson’s	 statistical
movement	 had	 aspects	 of	 a	 schismatic	 sect.	 He	 demanded	 the	 loyalty	 and
commitment	 of	 his	 associates	 and	 drove	 dissenters	 from	 the	 church
biometric.”	One	of	his	earliest	assistants,	George	Udny	Yule,	was	also	one	of
the	first	people	to	feel	Pearson’s	wrath.	Yule’s	obituary	of	Pearson,	written	for
the	 Royal	 Society	 in	 1936,	 conveys	 well	 the	 sting	 of	 those	 days,	 though
couched	in	polite	language.

The	 infection	 of	 his	 enthusiasm,	 it	 is	 true,	 was	 invaluable;	 but	 his
dominance,	even	his	very	eagerness	to	help,	could	be	a	disadvantage.…
This	desire	 for	domination,	 for	 everything	 to	be	 just	 as	he	wanted	 it,
comes	out	in	other	ways,	notably	the	editing	of	Biometrika—surely	the
most	personally	edited	 journal	 that	was	ever	published.…	Those	who
left	 him	 and	 began	 to	 think	 for	 themselves	 were	 apt,	 as	 happened
painfully	in	more	instances	than	one,	to	find	that	after	a	divergence	of
opinion	 the	 maintenance	 of	 friendly	 relations	 became	 difficult,	 after
express	criticism	impossible.



Even	so,	 there	were	cracks	 in	Pearson’s	edifice	of	causality-free	science,
perhaps	even	more	so	among	the	founders	than	among	the	later	disciples.	For
instance,	 Pearson	 himself	 surprisingly	wrote	 several	 papers	 about	 “spurious
correlation,”	 a	 concept	 impossible	 to	 make	 sense	 of	 without	 making	 some
reference	to	causation.

Pearson	 noticed	 that	 it’s	 relatively	 easy	 to	 find	 correlations	 that	 are	 just
plain	silly.	For	instance,	for	a	fun	example	postdating	Pearson’s	time,	there	is
a	strong	correlation	between	a	nation’s	per	capita	chocolate	consumption	and
its	number	of	Nobel	Prize	winners.	This	 correlation	 seems	silly	because	we
cannot	envision	any	way	in	which	eating	chocolate	could	cause	Nobel	Prizes.
A	more	likely	explanation	is	 that	more	people	in	wealthy,	Western	countries
eat	 chocolate,	 and	 the	 Nobel	 Prize	 winners	 have	 also	 been	 chosen
preferentially	 from	 those	 countries.	But	 this	 is	 a	 causal	 explanation,	which,
for	Pearson,	is	not	necessary	for	scientific	thinking.	To	him,	causation	is	just	a
“fetish	 amidst	 the	 inscrutable	 arcana	 of	 modern	 science.”	 Correlation	 is
supposed	 to	 be	 the	 goal	 of	 scientific	 understanding.	 This	 puts	 him	 in	 an
awkward	position	when	he	has	to	explain	why	one	correlation	is	meaningful
and	another	is	“spurious.”	He	explains	that	a	genuine	correlation	indicates	an
“organic	 relationship”	 between	 the	 variables,	 while	 a	 spurious	 correlation
does	not.	But	what	is	an	“organic	relationship”?	Is	it	not	causality	by	another
name?

Together,	 Pearson	 and	 Yule	 compiled	 several	 examples	 of	 spurious
correlations.	One	typical	case	is	now	called	confounding,	and	the	chocolate-
Nobel	story	is	an	example.	(Wealth	and	location	are	confounders,	or	common
causes	of	both	chocolate	consumption	and	Nobel	frequency.)	Another	type	of
“nonsense	correlation”	often	emerges	 in	 time	series	data.	For	example,	Yule
found	an	incredibly	high	correlation	(0.95)	between	England’s	mortality	rate
in	 a	 given	 year	 and	 the	 percentage	 of	marriages	 conducted	 that	 year	 in	 the
Church	of	England.	Was	God	punishing	marriage-happy	Anglicans?	No!	Two
separate	 historical	 trends	 were	 simply	 occurring	 at	 the	 same	 time:	 the
country’s	 mortality	 rate	 was	 decreasing	 and	 membership	 in	 the	 Church	 of
England	was	declining.	Since	both	were	going	down	at	the	same	time,	there
was	a	positive	correlation	between	them,	but	no	causal	connection.

Pearson	 discovered	 possibly	 the	 most	 interesting	 kind	 of	 “spurious
correlation”	as	 early	as	1899.	 It	 arises	when	 two	heterogeneous	populations
are	aggregated	into	one.	Pearson,	who,	like	Galton,	was	a	fanatical	collector
of	 data	 on	 the	human	body,	 had	obtained	measurements	 of	 806	male	 skulls
and	340	female	skulls	 from	the	Paris	Catacombs	(Figure	2.5).	He	computed
the	correlation	between	skull	length	and	skull	breadth.	When	the	computation



was	done	only	for	males	or	only	for	females,	the	correlations	were	negligible
—there	was	no	significant	association	between	skull	length	and	breadth.	But
when	the	two	groups	were	combined,	the	correlation	was	0.197,	which	would
ordinarily	be	considered	significant.	This	makes	sense,	because	a	small	skull
length	 is	 now	 an	 indicator	 that	 the	 skull	 likely	 belonged	 to	 a	 female	 and
therefore	that	the	breadth	will	also	be	small.	However,	Pearson	considered	it	a
statistical	artifact.	The	fact	that	the	correlation	was	positive	had	no	biological
or	 “organic”	 meaning;	 it	 was	 just	 a	 result	 of	 combining	 two	 distinct
populations	inappropriately.

FIGURE	2.5.	Karl	Pearson	with	a	skull	from	the	Paris	Catacombs.	(Source:	Drawing

by	Dakota	Harr.)

This	example	 is	 a	 case	of	a	more	general	phenomenon	called	Simpson’s
paradox.	Chapter	6	will	discuss	when	it	 is	appropriate	 to	segregate	data	 into
separate	groups	and	will	explain	why	spurious	correlations	can	emerge	from
aggregation.	 But	 let’s	 take	 a	 look	 at	 what	 Pearson	 wrote:	 “To	 those	 who
persist	 in	 looking	 upon	 all	 correlations	 as	 cause	 and	 effect,	 the	 fact	 that
correlation	can	be	produced	between	two	quite	uncorrelated	characters	A	and
B	by	taking	an	artificial	mixture	of	two	closely	allied	races,	must	come	rather
as	 a	 shock.”	As	 Stephen	 Stigler	 comments,	 “I	 cannot	 resist	 the	 speculation
that	he	himself	was	the	first	one	shocked.”	In	essence,	Pearson	was	scolding
himself	for	the	tendency	to	think	causally.

Looking	at	 the	 same	example	 through	 the	 lens	of	causality,	we	can	only
say,	What	a	missed	opportunity!	In	an	ideal	world,	such	examples	might	have
spurred	a	talented	scientist	to	think	about	the	reason	for	his	shock	and	develop
a	science	 to	predict	when	spurious	correlations	appear.	At	 the	very	 least,	he
should	 explain	when	 to	 aggregate	 the	 data	 and	when	 not	 to.	 But	 Pearson’s
only	 guidance	 to	 his	 followers	 is	 that	 an	 “artificial”	mixture	 (whatever	 that
means)	 is	bad.	 Ironically,	using	our	causal	 lens,	we	now	know	 that	 in	 some
cases	the	aggregated	data,	not	the	partitioned	data,	give	the	correct	result.	The
logic	of	 causal	 inference	can	actually	 tell	 us	which	one	 to	 trust.	 I	wish	 that
Pearson	were	here	to	enjoy	it!

Pearson’s	 students	 did	 not	 all	 follow	 in	 lockstep	 behind	 him.	Yule,	who



broke	with	Pearson	for	other	reasons,	broke	with	him	over	 this	 too.	Initially
he	 was	 in	 the	 hard-line	 camp	 holding	 that	 correlations	 say	 everything	 we
could	ever	wish	to	understand	about	science.	However,	he	changed	his	mind
to	some	extent	when	he	needed	to	explain	poverty	conditions	 in	London.	In
1899,	 he	 studied	 the	 question	 of	 whether	 “out-relief”	 (that	 is,	 welfare
delivered	 to	 a	 pauper’s	 home	 versus	 a	 poorhouse)	 increased	 the	 rate	 of
poverty.	 The	 data	 showed	 that	 districts	 with	 more	 out-relief	 had	 a	 higher
poverty	 rate,	 but	 Yule	 realized	 that	 the	 correlation	 was	 possibly	 spurious:
these	 districts	might	 also	 have	more	 elderly	 people,	who	 tend	 to	 be	 poorer.
However,	 he	 then	 showed	 that	 even	 in	 comparisons	 of	 districts	 with	 equal
proportions	of	elderly	people,	the	correlation	remained.	This	emboldened	him
to	say	that	the	increased	poverty	rate	was	due	to	out-relief.	But	after	stepping
out	 of	 line	 to	make	 this	 assertion,	 he	 fell	 back	 into	 line	 again,	writing	 in	 a
footnote,	“Strictly	speaking,	for	‘due	to’	read	‘associated	with.’”	This	set	the
pattern	for	generations	of	scientists	after	him.	They	would	think	“due	to”	and
say	“associated	with.”

With	Pearson	and	his	followers	actively	hostile	toward	causation,	and	with
halfhearted	 dissidents	 such	 as	Yule	 fearful	 of	 antagonizing	 their	 leader,	 the
stage	 was	 set	 for	 another	 scientist	 from	 across	 the	 ocean	 to	 issue	 the	 first
direct	challenge	to	the	causality-avoiding	culture.

SEWALL	WRIGHT,	GUINEA	PIGS,	AND	PATH	DIAGRAMS

When	 Sewall	 Wright	 arrived	 at	 Harvard	 University	 in	 1912,	 his	 academic
background	 scarcely	 suggested	 the	 kind	 of	 lasting	 effect	 he	would	 have	 on
science.	 He	 had	 attended	 a	 small	 (and	 now	 defunct)	 college	 in	 Illinois,
Lombard	College,	 graduating	 in	 a	 class	 of	 only	 seven	 students.	One	 of	 his
teachers	 had	 been	 his	 own	 father,	 Philip	 Wright,	 an	 academic	 jack-of-all-
trades	 who	 even	 ran	 the	 college’s	 printing	 press.	 Sewall	 and	 his	 brother
Quincy	helped	out	with	the	press,	and	among	other	things	they	published	the
first	poetry	by	a	not-yet-famous	Lombard	student,	Carl	Sandburg.

Sewall	 Wright’s	 ties	 with	 his	 father	 remained	 very	 close	 long	 after	 he
graduated	 from	 college.	 Papa	 Philip	 moved	 to	Massachusetts	 when	 Sewall
did.	Later,	when	Sewall	worked	in	Washington,	DC,	Philip	did	likewise,	first
at	 the	 US	 Tariff	 Commission	 and	 then	 at	 the	 Brookings	 Institution	 as	 an
economist.	 Although	 their	 academic	 interests	 diverged,	 they	 nevertheless
found	ways	to	collaborate,	and	Philip	was	the	first	economist	to	make	use	of
his	son’s	invention	of	path	diagrams.



Wright	came	 to	Harvard	 to	 study	genetics,	at	 the	 time	one	of	 the	hottest
topics	in	science	because	Gregor	Mendel’s	theory	of	dominant	and	recessive
genes	 had	 just	 been	 rediscovered.	 Wright’s	 advisor,	 William	 Castle,	 had
identified	eight	different	hereditary	factors	(or	genes,	as	we	would	call	them
today)	that	affected	fur	color	in	rabbits.	Castle	assigned	Wright	to	do	the	same
thing	for	guinea	pigs.	After	earning	his	doctorate	in	1915,	Wright	got	an	offer
for	 which	 he	 was	 uniquely	 qualified:	 taking	 care	 of	 guinea	 pigs	 at	 the	 US
Department	of	Agriculture	(USDA).

One	wonders	if	the	USDA	knew	what	it	was	getting	when	it	hired	Wright.
Perhaps	 it	expected	a	diligent	animal	caretaker	who	could	straighten	out	 the
chaos	of	 twenty	years	of	poorly	kept	 records.	Wright	did	all	 that	and	much,
much	more.	Wright’s	 guinea	 pigs	were	 the	 springboard	 to	 his	whole	 career
and	 his	whole	 theory	 of	 evolution,	much	 like	 the	 finches	 on	 the	Galapagos
islands	that	had	inspired	Charles	Darwin.	Wright	was	an	early	advocate	of	the
view	that	evolution	is	not	gradual,	as	Darwin	had	posited,	but	takes	place	in
relatively	sudden	bursts.

In	 1925,	 Wright	 moved	 on	 to	 a	 faculty	 position	 at	 the	 University	 of
Chicago	 that	 was	 probably	 better	 suited	 to	 someone	with	 his	 wide-ranging
theoretical	interests.	Even	so,	he	remained	very	devoted	to	his	guinea	pigs.	An
often	told	anecdote	says	that	he	was	once	holding	an	unruly	guinea	pig	under
his	 arm	 while	 lecturing,	 and	 absentmindedly	 began	 using	 it	 to	 erase	 the
blackboard	 (see	 Figure	 2.6).	 While	 his	 biographers	 agree	 that	 this	 story	 is
likely	apocryphal,	such	stories	often	contain	more	truth	than	dry	biographies
do.

Wright’s	early	work	at	 the	USDA	interests	us	most	here.	The	inheritance
of	coat	color	in	guinea	pigs	stubbornly	refused	to	play	by	Mendelian	rules.	It
proved	 virtually	 impossible	 to	 breed	 an	 all-white	 or	 all-colored	 guinea	 pig,
and	even	the	most	inbred	families	(after	multiple	generations	of	brother-sister
mating)	still	had	pronounced	variation,	from	mostly	white	to	mostly	colored.
This	contradicted	 the	prediction	of	Mendelian	genetics	 that	a	particular	 trait
should	become	“fixed”	by	multiple	generations	of	inbreeding.

Wright	began	to	doubt	 that	genetics	alone	governed	the	amount	of	white
and	postulated	that	“developmental	factors”	in	the	womb	were	causing	some
of	the	variations.	With	hindsight,	we	know	that	he	was	correct.	Different	color
genes	are	expressed	in	different	places	on	the	body,	and	the	patterns	of	color
depend	 not	 only	 on	 what	 genes	 the	 animal	 has	 inherited	 but	 where	 and	 in
what	combinations	they	happen	to	be	expressed	or	suppressed.



FIGURE	2.6.	Sewall	Wright	was	the	first	person	to	develop	a	mathematical	method	for

answering	causal	questions	from	data,	known	as	path	diagrams.	His	love	of
mathematics	surrendered	only	to	his	passion	for	guinea	pigs.	(Source:	Drawing	by

Dakota	Harr.)

As	 it	 often	 happens	 (at	 least	 to	 the	 ingenious!),	 a	 pressing	 research
problem	 leads	 to	 new	 methods	 of	 analysis,	 which	 vastly	 transcended	 their
origins	 in	 guinea	 pig	 genetics.	 Yet,	 for	 Sewall	 Wright,	 estimating	 the
developmental	 factors	probably	 seemed	 like	a	 college-level	problem	 that	he
could	have	 solved	 in	his	 father’s	math	 class	 at	Lombard.	When	 looking	 for
the	magnitude	of	 some	unknown	quantity,	 you	 first	 assign	 a	 symbol	 to	 that
quantity,	next	you	express	what	you	know	about	 this	and	other	quantities	 in
the	form	of	mathematical	equations,	and	finally,	if	you	have	enough	patience
and	enough	equations,	you	can	solve	them	and	find	your	quantity	of	interest.

In	Wright’s	case,	the	desired	and	unknown	quantity	(shown	in	Figure	2.7)
was	 d,	 the	 effect	 of	 “developmental	 factors”	 on	 white	 fur.	 Other	 causal
quantities	that	entered	into	his	equations	included	h,	for	“hereditary”	factors,
also	unknown.	Finally—and	here	comes	Wright’s	ingenuity—he	showed	that
if	we	knew	the	causal	quantities	in	Figure	2.7,	we	could	predict	correlations	in
the	data	(not	shown	in	the	diagram)	by	a	simple	graphical	rule.	This	rule	sets
up	a	bridge	from	the	deep,	hidden	world	of	causation	to	the	surface	world	of



correlations.	 It	 was	 the	 first	 bridge	 ever	 built	 between	 causality	 and
probability,	the	first	crossing	of	the	barrier	between	rung	two	and	rung	one	on
the	 Ladder	 of	 Causation.	 Having	 built	 this	 bridge,	 Wright	 could	 travel
backward	over	it,	from	the	correlations	measured	in	the	data	(rung	one)	to	the
hidden	causal	quantities,	d	and	h	(rung	two).	He	did	this	by	solving	algebraic
equations.	This	idea	must	have	seemed	simple	to	Wright	but	turned	out	to	be
revolutionary	because	it	was	the	first	proof	that	the	mantra	“Correlation	does
not	 imply	 causation”	 should	 give	 way	 to	 “Some	 correlations	 do	 imply
causation.”

FIGURE	2.7.	Sewall	Wright’s	first	path	diagram,	illustrating	the	factors	leading	to	coat

color	in	guinea	pigs.	D	=	developmental	factors	(after	conception,	before	birth),	E
=	environmental	factors	(after	birth),	G	=	genetic	factors	from	each	individual

parent,	H	=	combined	hereditary	factors	from	both	parents,	O,	O′	=	offspring.	The
objective	of	analysis	was	to	estimate	the	strength	of	the	effects	of	D,	E,	H	(written
as	d,	e,	h	in	the	diagram).	(Source:	Sewall	Wright,	Proceedings	of	the	National

Academy	of	Sciences	[1920],	320–332.)

In	 the	 end,	Wright	 showed	 that	 the	 hypothesized	 developmental	 factors
were	more	important	than	heredity.	In	a	randomly	bred	population	of	guinea
pigs,	42	percent	of	 the	variation	 in	coat	pattern	was	due	 to	heredity,	and	58
percent	 was	 developmental.	 By	 contrast,	 in	 a	 highly	 inbred	 family,	 only	 3
percent	 of	 the	 variation	 in	 white	 fur	 coverage	 was	 due	 to	 heredity,	 and	 92
percent	was	developmental.	In	other	words,	twenty	generations	of	inbreeding
had	 all	 but	 eliminated	 the	 genetic	 variation,	 but	 the	 developmental	 factors
remained.

As	interesting	as	this	result	is,	the	crux	of	the	matter	for	our	history	is	the
way	that	Wright	made	his	case.	The	path	diagram	in	Figure	2.7	 is	 the	street
map	that	tells	us	how	to	navigate	over	this	bridge	between	rung	one	and	rung
two.	It	 is	a	scientific	revolution	in	one	picture—and	it	comes	complete	with
adorable	guinea	pigs!

Notice	 that	 the	 path	 diagram	 shows	 every	 conceivable	 factor	 that	 could
affect	 a	 baby	 guinea	 pig’s	 pigmentation.	 The	 letters	D,	 E,	 and	H	 refer	 to
developmental,	 environmental,	 and	 hereditary	 factors,	 respectively.	 Each



parent	(the	sire	and	the	dam)	and	each	child	(offspring	O	and	O′)	has	its	own
set	of	D,	E,	and	H	factors.	The	two	offspring	share	environmental	factors	but
have	 different	 developmental	 histories.	 The	 diagram	 incorporates	 the	 then
novel	insights	of	Mendelian	genetics:	a	child’s	heredity	(H)	is	determined	by
its	parents’	sperm	and	egg	cells	(G	and	G″),	and	these	in	turn	are	determined
from	the	parents’	heredity	(H″	and	H‴)	via	a	mixing	process	that	was	not	yet
understood	 (because	 DNA	 had	 not	 been	 discovered).	 It	 was	 understood,
though,	that	the	mixing	process	included	an	element	of	randomness	(labeled
“Chance”	in	the	diagram).

One	thing	the	diagram	does	not	show	explicitly	is	the	difference	between
an	 inbred	family	and	a	normal	 family.	 In	an	 inbred	family	 there	would	be	a
strong	correlation	between	the	heredity	of	the	sire	and	the	dam,	which	Wright
indicated	 with	 a	 two-headed	 arrow	 between	 H″	 and	H‴.	 Aside	 from	 that,
every	arrow	 in	 the	diagram	 is	one-way	and	 leads	 from	a	cause	 to	an	effect.
For	example,	the	arrow	from	G	to	H	indicates	that	the	sire’s	sperm	cell	may
have	 a	 direct	 causal	 effect	 on	 the	 offspring’s	 heredity.	 The	 absence	 of	 an
arrow	from	G	to	H′	indicates	that	the	sperm	cell	that	gave	rise	to	offspring	O
has	no	causal	effect	on	the	heredity	of	offspring	O′.

When	you	take	apart	the	diagram	arrow	by	arrow	in	this	way,	I	think	you
will	 find	 that	 every	 one	 of	 them	makes	 perfect	 sense.	 Note	 also	 that	 each
arrow	is	accompanied	by	a	small	letter	(a,	b,	c,	etc.).	These	letters,	called	path
coefficients,	represent	the	strength	of	the	causal	effects	that	Wright	wanted	to
solve	 for.	 Roughly	 speaking,	 a	 path	 coefficient	 represents	 the	 amount	 of
variability	in	the	target	variable	that	is	accounted	for	by	the	source	variable.
For	 instance,	 it	 is	 fairly	 evident	 that	 50	 percent	 of	 each	 child’s	 hereditary
makeup	should	come	from	each	parent,	so	that	a	should	be	1/2.	(For	technical
reasons,	Wright	preferred	 to	 take	 the	 square	 root,	 so	 that	a	 =	 1/ 	 and	a2	 =
1/2.)

This	interpretation	of	path	coefficients,	in	terms	of	the	amount	of	variation
explained	 by	 a	 variable,	 was	 reasonable	 at	 the	 time.	 The	 modern	 causal
interpretation	 is	 different:	 the	 path	 coefficients	 represent	 the	 results	 of	 a
hypothetical	 intervention	 on	 the	 source	 variable.	However,	 the	 notion	 of	 an
intervention	would	have	 to	wait	until	 the	1940s,	and	Wright	could	not	have
anticipated	 it	 when	 he	 wrote	 his	 paper	 in	 1920.	 Fortunately,	 in	 the	 simple
models	he	analyzed	then,	the	two	interpretations	yield	the	same	result.

I	want	to	emphasize	that	the	path	diagram	is	not	just	a	pretty	picture;	it	is	a
powerful	 computational	 device	 because	 the	 rule	 for	 computing	 correlations
(the	bridge	from	rung	two	to	rung	one)	involves	tracing	the	paths	that	connect



two	variables	to	each	other	and	multiplying	the	coefficients	encountered	along
the	way.	Also,	notice	that	the	omitted	arrows	actually	convey	more	significant
assumptions	than	those	that	are	present.	An	omitted	arrow	restricts	the	causal
effect	 to	 zero,	 while	 a	 present	 arrow	 remains	 totally	 agnostic	 about	 the
magnitude	 of	 the	 effect	 (unless	we	 a	 priori	 impose	 some	 value	 on	 the	 path
coefficient).

Wright’s	paper	was	a	 tour	de	force	and	deserves	 to	be	considered	one	of
the	 landmark	results	of	 twentieth-century	biology.	Certainly	 it	 is	a	 landmark
for	 the	 history	 of	 causality.	 Figure	 2.7	 is	 the	 first	 causal	 diagram	 ever
published,	the	first	step	of	twentieth-century	science	onto	the	second	rung	of
the	Ladder	of	Causation.	And	not	a	tentative	step	but	a	bold	and	decisive	one!
The	 following	 year	 Wright	 published	 a	 much	 more	 general	 paper	 called
“Correlation	and	Causation”	that	explained	how	path	analysis	worked	in	other
settings	than	guinea	pig	breeding.

I	don’t	know	what	kind	of	reaction	 the	 thirty-year-old	scientist	expected,
but	the	reaction	he	got	surely	must	have	stunned	him.	It	came	in	the	form	of	a
rebuttal	 published	 in	 1921	 by	 one	 Henry	 Niles,	 a	 student	 of	 American
statistician	Raymond	Pearl	 (no	 relation),	who	 in	 turn	was	 a	 student	 of	Karl
Pearson,	the	godfather	of	statistics.

Academia	 is	 full	 of	 genteel	 savagery,	 which	 I	 have	 had	 the	 honor	 to
weather	 at	 times	 in	 my	 own	 otherwise	 placid	 career,	 but	 even	 so	 I	 have
seldom	seen	a	criticism	as	savage	as	Niles’s.	He	begins	with	a	long	series	of
quotes	 from	 his	 heroes,	 Karl	 Pearson	 and	 Francis	 Galton,	 attesting	 to	 the
redundancy	or	even	meaninglessness	of	the	word	“cause.”	He	concludes,	“To
contrast	 ‘causation’	 and	 ‘correlation’	 is	 unwarranted	 because	 causation	 is
simply	 perfect	 correlation.”	 In	 this	 sentence	 he	 is	 directly	 echoing	 what
Pearson	wrote	in	Grammar	of	Science.

Niles	 further	 disparages	 Wright’s	 entire	 methodology.	 He	 writes,	 “The
basic	fallacy	of	the	method	appears	to	be	the	assumption	that	it	is	possible	to
set	 up	 a	 priori	 a	 comparatively	 simple	 graphic	 system	 which	 will	 truly
represent	the	lines	of	action	of	several	variables	upon	each	other,	and	upon	a
common	result.”	Finally,	Niles	works	 through	some	examples	and,	bungling
the	computations	because	he	has	not	taken	the	trouble	to	understand	Wright’s
rules,	 he	 arrives	 at	 opposite	 conclusions.	 In	 summary,	 he	 declares,	 “We
therefore	 conclude	 that	 philosophically	 the	 basis	 of	 the	 method	 of	 path
coefficients	is	faulty,	while	practically	the	results	of	applying	it	where	it	can
be	checked	prove	it	to	be	wholly	unreliable.”

From	the	scientific	point	of	view	a	detailed	discussion	of	Niles’s	criticism



is	 perhaps	 not	 worth	 the	 time,	 but	 his	 paper	 is	 very	 important	 to	 us	 as
historians	of	causation.	First,	it	faithfully	reflects	the	attitude	of	his	generation
toward	causation	and	the	total	grip	that	his	mentor,	Karl	Pearson,	had	on	the
scientific	thinking	of	his	time.	Second,	we	continue	to	hear	Niles’s	objections
today.

Of	course,	at	times	scientists	do	not	know	the	entire	web	of	relationships
between	their	variables.	In	that	case,	Wright	argued,	we	can	use	the	diagram
in	exploratory	mode;	we	can	postulate	certain	causal	relationships	and	work
out	the	predicted	correlations	between	variables.	If	 these	contradict	the	data,
then	we	have	evidence	that	the	relationships	we	assumed	were	false.	This	way
of	 using	 path	 diagrams,	 rediscovered	 in	 1953	 by	 Herbert	 Simon	 (a	 1978
Nobel	laureate	in	economics),	inspired	much	work	in	the	social	sciences.

Although	 we	 don’t	 need	 to	 know	 every	 causal	 relation	 between	 the
variables	of	 interest	 and	might	be	able	 to	draw	some	conclusions	with	only
partial	information,	Wright	makes	one	point	with	absolute	clarity:	you	cannot
draw	causal	 conclusions	without	 some	causal	hypotheses.	This	 echoes	what
we	concluded	in	Chapter	1:	you	cannot	answer	a	question	on	rung	two	of	the
Ladder	of	Causation	using	only	data	collected	from	rung	one.

Sometimes	people	ask	me,	“Doesn’t	that	make	causal	reasoning	circular?
Aren’t	 you	 just	 assuming	what	 you	want	 to	 prove?”	 The	 answer	 is	 no.	 By
combining	very	mild,	qualitative,	and	obvious	assumptions	(e.g.,	coat	color	of
the	son	does	not	influence	that	of	the	parents)	with	his	twenty	years	of	guinea
pig	data,	he	obtained	a	quantitative	and	by	no	means	obvious	result:	 that	42
percent	 of	 the	 variation	 in	 coat	 color	 is	 due	 to	 heredity.	 Extracting	 the
nonobvious	 from	 the	 obvious	 is	 not	 circular—it	 is	 a	 scientific	 triumph	 and
deserves	to	be	hailed	as	such.

Wright’s	 contribution	 is	 unique	 because	 the	 information	 leading	 to	 the
conclusion	 (of	 42	 percent	 heritability)	 resided	 in	 two	 distinct,	 almost
incompatible	mathematical	 languages:	 the	language	of	diagrams	on	one	side
and	 that	 of	 data	 on	 the	 other.	 This	 heretical	 idea	 of	 marrying	 qualitative
“arrow-information”	 to	 quantitative	 “data-information”	 (two	 foreign
languages!)	 was	 one	 of	 the	 miracles	 that	 first	 attracted	 me,	 as	 a	 computer
scientist,	to	this	enterprise.

Many	people	still	make	Niles’s	mistake	of	thinking	that	the	goal	of	causal
analysis	is	to	prove	that	X	is	a	cause	of	Y	or	else	to	find	the	cause	of	Y	from
scratch.	 That	 is	 the	 problem	 of	 causal	 discovery,	 which	 was	my	 ambitious
dream	when	 I	 first	 plunged	 into	 graphical	 modeling	 and	 is	 still	 an	 area	 of
vigorous	research.	In	contrast,	the	focus	of	Wright’s	research,	as	well	as	this



book,	 is	 representing	 plausible	 causal	 knowledge	 in	 some	 mathematical
language,	combining	it	with	empirical	data,	and	answering	causal	queries	that
are	of	practical	value.	Wright	understood	from	the	very	beginning	that	causal
discovery	was	much	more	difficult	and	perhaps	impossible.	In	his	response	to
Niles,	 he	 writes,	 “The	 writer	 [i.e.,	 Wright	 himself]	 has	 never	 made	 the
preposterous	 claim	 that	 the	 theory	 of	 path	 coefficients	 provides	 a	 general
formula	 for	 the	 deduction	 of	 causal	 relations.	He	wishes	 to	 submit	 that	 the
combination	of	knowledge	of	correlations	with	knowledge	of	causal	relations
to	 obtain	 certain	 results,	 is	 a	 different	 thing	 from	 the	 deduction	 of	 causal
relations	from	correlations	implied	by	Niles’	statement.”

E	PUR	SI	MUOVE	(AND	YET	IT	MOVES)

If	 I	 were	 a	 professional	 historian,	 I	 would	 probably	 stop	 here.	 But	 as	 the
“Whig	 historian”	 that	 I	 promised	 to	 be,	 I	 cannot	 contain	 myself	 from
expressing	my	 sheer	 admiration	 for	 the	 precision	 of	Wright’s	 words	 in	 the
quote	 ending	 the	 previous	 section,	which	 have	 not	 gone	 stale	 in	 the	 ninety
years	 since	 he	 first	 articulated	 them	 and	which	 essentially	 defined	 the	 new
paradigm	of	modern	causal	analysis.

My	admiration	for	Wright’s	precision	is	second	only	to	my	admiration	for
his	 courage	 and	 determination.	 Imagine	 the	 situation	 in	 1921.	A	 self-taught
mathematician	 faces	 the	 hegemony	 of	 the	 statistical	 establishment	 alone.
They	tell	him,	“Your	method	is	based	on	a	complete	misapprehension	of	the
nature	 of	 causality	 in	 the	 scientific	 sense.”	 And	 he	 retorts,	 “Not	 so!	 My
method	generates	something	that	is	important	and	goes	beyond	anything	that
you	can	generate.”	They	say,	“Our	gurus	looked	into	these	problems	already,
two	decades	 ago,	 and	concluded	 that	what	you	have	done	 is	 nonsense.	You
have	 only	 combined	 correlations	 with	 correlations	 and	 gotten	 correlations.
When	 you	 grow	 up,	 you	 will	 understand.”	 And	 he	 continues,	 “I	 am	 not
dismissing	your	gurus,	 but	 a	 spade	 is	 a	 spade.	My	path	 coefficients	 are	not
correlations.	They	are	something	totally	different:	causal	effects.”

Imagine	 that	 you	 are	 in	 kindergarten,	 and	 your	 friends	 mock	 you	 for
believing	that	3	+	4	=	7,	when	everybody	knows	that	3	+	4	=	8.	Then	imagine
going	to	your	teacher	for	help	and	hearing	her	say,	too,	that	3	+	4	=	8.	Would
you	not	go	home	and	ask	yourself	if	perhaps	there	was	something	wrong	with
the	way	you	were	thinking?	Even	the	strongest	man	would	start	 to	waver	in
his	convictions.	I	have	been	in	that	kindergarten,	and	I	know.

But	Wright	 did	 not	 blink.	 And	 this	 was	 not	 just	 a	matter	 of	 arithmetic,



where	there	can	be	some	sort	of	independent	verification.	Only	philosophers
had	dared	to	express	an	opinion	on	the	nature	of	causation.	Where	did	Wright
get	 this	 inner	 conviction	 that	 he	was	 on	 the	 right	 track	 and	 the	 rest	 of	 the
kindergarten	class	was	 just	plain	wrong?	Maybe	his	Midwestern	upbringing
and	 the	 tiny	college	he	went	 to	encouraged	his	 self-reliance	and	 taught	him
that	the	surest	kind	of	knowledge	is	what	you	construct	yourself.

One	 of	 the	 earliest	 science	 books	 I	 read	 in	 school	 told	 of	 how	 the
Inquisition	 forced	Galileo	 to	 recant	 his	 teaching	 that	 Earth	 revolves	 around
the	sun	and	how	he	whispered	under	his	breath,	“And	yet	it	moves”	(E	pur	si
muove).	 I	 don’t	 think	 that	 there	 is	 a	 child	 in	 the	 world	 who	 has	 read	 this
legend	 and	 not	 been	 inspired	 by	 Galileo’s	 courage	 in	 defending	 his
convictions.	 Yet	 as	much	 as	 we	 admire	 him	 for	 his	 stand,	 I	 can’t	 help	 but
think	that	he	at	least	had	his	astronomical	observations	to	fall	back	on.	Wright
had	 only	 untested	 conclusions—say,	 that	 developmental	 factors	 account	 for
58	 percent,	 not	 3	 percent,	 of	 variation.	With	 nothing	 to	 lean	 on	 except	 his
internal	conviction	that	path	coefficients	tell	you	what	correlations	do	not,	he
still	declared,	“And	yet	it	moves!”

Colleagues	 tell	 me	 that	 when	 Bayesian	 networks	 fought	 against	 the
artificial	intelligence	establishment	(see	Chapter	3),	I	acted	stubbornly,	single-
mindedly,	and	uncompromisingly.	Indeed,	I	recall	being	totally	convinced	of
my	approach,	with	not	an	 iota	of	hesitation.	But	I	had	probability	 theory	on
my	 side.	 Wright	 didn’t	 have	 even	 one	 theorem	 to	 lean	 on.	 Scientists	 had
abandoned	 causation,	 so	 Wright	 could	 not	 fall	 back	 on	 any	 theoretical
framework.	Nor	could	he	rely	on	authorities,	as	Niles	did,	because	there	was
no	one	for	him	to	quote;	the	gurus	had	already	pronounced	their	verdicts	three
decades	earlier.

But	one	solace	to	Wright,	and	one	sign	that	he	was	on	the	right	path,	must
have	 been	 his	 understanding	 that	 he	 could	 answer	 questions	 that	 cannot	 be
answered	 in	 any	 other	way.	Determining	 the	 relative	 importance	 of	 several
factors	was	one	such	question.	Another	beautiful	example	of	this	can	be	found
in	his	“Correlation	and	Causation”	paper,	from	1921,	which	asks	how	much	a
guinea	 pig’s	 birth	weight	will	 be	 affected	 if	 it	 spends	 one	more	 day	 in	 the
womb.	I	would	like	 to	examine	Wright’s	answer	 in	some	detail	 to	enjoy	the
beauty	of	 his	method	 and	 to	 satisfy	 readers	who	would	 like	 to	 see	how	 the
mathematics	of	path	analysis	works.

Notice	that	we	cannot	answer	Wright’s	question	directly,	because	we	can’t
weigh	 a	 guinea	 pig	 in	 the	womb.	What	we	 can	 do,	 though,	 is	 compare	 the
birth	 weights	 of	 guinea	 pigs	 that	 spend	 (say)	 sixty-six	 days	 gestating	 with



those	that	spend	sixty-seven	days.	Wright	noted	that	the	guinea	pigs	that	spent
a	day	 longer	 in	 the	womb	weighed	an	average	of	5.66	grams	more	at	birth.
So,	one	might	naively	suppose	that	a	guinea	pig	embryo	grows	at	5.66	grams
per	day	just	before	it	is	born.

“Wrong!”	 says	Wright.	 The	 pups	 born	 later	 are	 usually	 born	 later	 for	 a
reason:	 they	have	 fewer	 litter	mates.	This	means	 that	 they	have	had	a	more
favorable	environment	for	growth	throughout	the	pregnancy.	A	pup	with	only
two	siblings,	for	instance,	will	already	weigh	more	on	day	sixty-six	than	a	pup
with	 four	 siblings.	Thus	 the	difference	 in	birth	weights	has	 two	causes,	 and
we	want	to	disentangle	them.	How	much	of	the	5.66	grams	is	due	to	spending
an	additional	day	 in	utero	and	how	much	 is	due	 to	having	fewer	siblings	 to
compete	with?

Wright	answered	this	question	by	setting	up	a	path	diagram	(Figure	2.8).	X
represents	the	pup’s	birth	weight.	Q	and	P	represent	the	two	known	causes	of
the	birth	weight:	the	length	of	gestation	(P)	and	rate	of	growth	in	utero	(Q).	L
represents	litter	size,	which	affects	both	P	and	Q	(a	larger	litter	causes	the	pup
to	 grow	 slower	 and	 also	 have	 fewer	 days	 in	 utero).	 It’s	 very	 important	 to
realize	that	X,	P,	and	L	can	be	measured,	for	each	guinea	pig,	but	Q	cannot.
Finally,	A	and	C	are	exogenous	causes	that	we	don’t	have	any	data	about	(e.g.,
hereditary	 and	 environmental	 factors	 that	 control	 growth	 rate	 and	 gestation
time	independently	of	litter	size).	The	important	assumption	that	these	factors
are	 independent	 of	 each	 other	 is	 conveyed	 by	 the	 absence	 of	 any	 arrow
between	them,	as	well	as	of	any	common	ancestor.

FIGURE	2.8.	Causal	(path)	diagram	for	birth-weight	example.

Now	 the	 question	 facing	Wright	 was,	 “What	 is	 the	 direct	 effect	 of	 the
gestation	 period	P	 on	 the	 birth	 weight	X?”	 The	 data	 (5.66	 grams	 per	 day)
don’t	tell	you	the	direct	effect;	they	give	you	a	correlation,	biased	by	the	litter
size	L.	To	get	the	direct	effect,	we	need	to	remove	this	bias.

In	 Figure	 2.8,	 the	 direct	 effect	 is	 represented	 by	 the	 path	 coefficient	 p,
corresponding	to	the	path	P	 	X.	The	bias	due	to	litter	size	corresponds	to	the



path	P	 	L	 	Q	 	X.	And	now	the	algebraic	magic:	 the	amount	of	bias	 is
equal	to	the	product	of	the	path	coefficients	along	that	path	(in	other	words,	l
times	 l′	 times	 q).	 The	 total	 correlation,	 then,	 is	 just	 the	 sum	 of	 the	 path
coefficients	along	the	two	paths:	algebraically,	p	+	(l	×	l′	×	q)	=	5.66	grams
per	day.

If	we	knew	the	path	coefficients	 l,	l′,	and	q,	 then	we	could	 just	work	out
the	second	term	and	subtract	it	from	5.66	to	get	the	desired	quantity	p.	But	we
don’t	know	them,	because	Q	(for	example)	is	not	measured.	But	here’s	where
the	ingenuity	of	path	coefficients	really	shines.	Wright’s	methods	tell	us	how
to	express	each	of	the	measured	correlations	in	terms	of	the	path	coefficients.
After	doing	this	for	each	of	the	measured	pairs	(P,	X),	(L,	X),	and	(L,	P),	we
obtain	three	equations	that	can	be	solved	algebraically	for	the	unknown	path
coefficients,	p,	l′,	and	l	×	q.	Then	we	are	done,	because	the	desired	quantity	p
has	been	obtained.

Today	we	can	skip	the	mathematics	altogether	and	calculate	p	by	cursory
inspection	 of	 the	 diagram.	 But	 in	 1920,	 this	 was	 the	 first	 time	 that
mathematics	 was	 summoned	 to	 connect	 causation	 and	 correlation.	 And	 it
worked!	Wright	calculated	p	to	be	3.34	grams	per	day.	In	other	words,	had	all
the	 other	 variables	 (A,	 L,	C,	Q)	 been	 held	 constant	 and	 only	 the	 time	 of
gestation	 increased	by	 a	day,	 the	 average	 increase	 in	birth	weight	would	be
3.34	grams	per	day.	Note	that	this	result	is	biologically	meaningful.	It	tells	us
how	 rapidly	 the	 pups	 are	 growing	 per	 day	 before	 birth.	 By	 contrast,	 the
number	 5.66	 grams	 per	 day	 has	 no	 biological	 significance,	 because	 it
conflates	two	separate	processes,	one	of	which	is	not	causal	but	anticausal	(or
diagnostic)	in	the	link	P	 	L.	Lesson	one	from	this	example:	causal	analysis
allows	us	to	quantify	processes	in	the	real	world,	not	just	patterns	in	the	data.
The	pups	are	growing	at	3.34	grams	per	day,	not	5.66	grams	per	day.	Lesson
two,	whether	you	followed	the	mathematics	or	not:	in	path	analysis	you	draw
conclusions	 about	 individual	 causal	 relationships	 by	 examining	 the	diagram
as	 a	whole.	 The	 entire	 structure	 of	 the	 diagram	may	 be	 needed	 to	 estimate
each	individual	parameter.

In	a	world	where	science	progresses	logically,	Wright’s	response	to	Niles
should	 have	 produced	 a	 scientific	 excitement	 followed	 by	 an	 enthusiastic
adoption	of	 his	methods	by	other	 scientists	 and	 statisticians.	But	 that	 is	 not
what	happened.	“One	of	the	mysteries	of	the	history	of	science	from	1920	to
1960	is	the	virtual	absence	of	any	appreciable	use	of	path	analysis,	except	by
Wright	himself	 and	by	 students	of	 animal	breeding,”	wrote	one	of	Wright’s
geneticist	 colleagues,	 James	 Crow.	 “Although	Wright	 had	 illustrated	 many
diverse	 problems	 to	 which	 the	method	was	 applicable,	 none	 of	 these	 leads



was	followed.”

Crow	didn’t	know	it,	but	the	mystery	extended	to	social	sciences	as	well.
In	1972,	economist	Arthur	Goldberger	lamented	the	“scandalous	neglect”	of
Wright’s	work	during	that	period	and	noted,	with	the	enthusiasm	of	a	convert,
that	“[Wright’s]	approach…	sparked	the	recent	upsurge	of	causal	modeling	in
sociology.”

If	only	we	could	go	back	and	ask	Wright’s	contemporaries,	“Why	didn’t
you	 pay	 attention?”	 Crow	 suggests	 one	 reason:	 path	 analysis	 “doesn’t	 lend
itself	 to	 ‘canned’	 programs.	 The	 user	 has	 to	 have	 a	 hypothesis	 and	 must
devise	 an	 appropriate	 diagram	of	multiple	 causal	 sequences.”	 Indeed,	Crow
put	his	finger	on	an	essential	point:	path	analysis	requires	scientific	thinking,
as	does	every	exercise	in	causal	inference.	Statistics,	as	frequently	practiced,
discourages	 it	 and	 encourages	 “canned”	 procedures	 instead.	 Scientists	 will
always	 prefer	 routine	 calculations	 on	 data	 to	 methods	 that	 challenge	 their
scientific	knowledge.

R.	A.	Fisher,	the	undisputed	high	priest	of	statistics	in	the	generation	after
Galton	and	Pearson,	described	 this	difference	 succinctly.	 In	1925,	he	wrote,
“Statistics	 may	 be	 regarded	 as…	 the	 study	 of	 methods	 of	 the	 reduction	 of
data.”	Pay	attention	to	the	words	“methods,”	“reduction,”	and	“data.”	Wright
abhorred	 the	 idea	 of	 statistics	 as	 merely	 a	 collection	 of	 methods;	 Fisher
embraced	 it.	 Causal	 analysis	 is	 emphatically	 not	 just	 about	 data;	 in	 causal
analysis	we	must	incorporate	some	understanding	of	the	process	that	produces
the	data,	and	then	we	get	something	that	was	not	in	the	data	to	begin	with.	But
Fisher	was	right	about	one	point:	once	you	remove	causation	from	statistics,
reduction	of	data	is	the	only	thing	left.

Although	Crow	did	not	mention	 it,	Wright’s	biographer	William	Provine
points	out	another	factor	that	may	have	affected	the	lack	of	support	for	path
analysis.	From	the	mid-1930s	onward,	Fisher	considered	Wright	his	enemy.	I
previously	quoted	Yule	on	how	relations	with	Pearson	became	strained	if	you
disagreed	with	 him	 and	 impossible	 if	 you	 criticized	 him.	 Exactly	 the	 same
thing	 could	 be	 said	 about	 Fisher.	 The	 latter	 carried	 out	 nasty	 feuds	 with
anyone	 he	 disagreed	 with,	 including	 Pearson,	 Pearson’s	 son	 Egon,	 Jerzy
Neyman	(more	will	be	said	on	these	two	in	Chapter	8),	and	of	course	Wright.

The	 real	 focus	 of	 the	 Fisher-Wright	 rivalry	 was	 not	 path	 analysis	 but
evolutionary	biology.	Fisher	disagreed	with	Wright’s	 theory	 (called	“genetic
drift”)	 that	 a	 species	 can	 evolve	 rapidly	 when	 it	 undergoes	 a	 population
bottleneck.	The	details	of	the	dispute	are	beyond	the	scope	of	this	book,	and
the	 interested	 reader	 should	consult	Provine.	Relevant	here	 is	 this:	 from	 the



1920s	to	the	1950s,	the	scientific	world	for	the	most	part	turned	to	Fisher	as
its	oracle	for	statistical	knowledge.	And	you	can	be	certain	that	Fisher	never
said	one	kind	word	to	anyone	about	path	analysis.

In	 the	 1960s,	 things	 began	 to	 change.	 A	 group	 of	 social	 scientists,
including	Otis	Duncan,	Hubert	Blalock,	and	the	economist	Arthur	Goldberger
(mentioned	earlier),	rediscovered	path	analysis	as	a	method	of	predicting	the
effect	 of	 social	 and	 educational	 policies.	 In	 yet	 another	 irony	 of	 history,
Wright	 had	 actually	 been	 asked	 to	 speak	 to	 an	 influential	 group	 of
econometricians	called	the	Cowles	Commission	in	1947,	but	he	utterly	failed
to	 communicate	 to	 them	 what	 path	 diagrams	 were	 about.	 Only	 when
economists	 arrived	at	 similar	 ideas	 themselves	was	a	 short-lived	connection
forged.

The	fates	of	path	analysis	 in	economics	and	sociology	followed	different
trajectories,	each	leading	to	a	betrayal	of	Wright’s	ideas.	Sociologists	renamed
path	analysis	as	structural	equation	modeling	(SEM),	embraced	diagrams,	and
used	them	extensively	until	1970,	when	a	computer	package	called	LISREL
automated	the	calculation	of	path	coefficients	(in	some	cases).	Wright	would
have	 predicted	what	 followed:	 path	 analysis	 turned	 into	 a	 rote	method,	 and
researchers	 became	 software	 users	with	 little	 interest	 in	what	was	 going	 on
under	 the	 hood.	 In	 the	 late	 1980s,	 a	 public	 challenge	 (by	 statistician	David
Freedman)	 to	 explain	 the	 assumptions	 behind	 SEM	 went	 unanswered,	 and
some	 leading	 SEM	 experts	 even	 disavowed	 that	 SEMs	 had	 anything	 to	 do
with	causality.

In	 economics,	 the	 algebraic	 part	 of	 path	 analysis	 became	 known	 as
simultaneous	 equation	 models	 (no	 acronym).	 Economists	 essentially	 never
used	path	diagrams	and	continue	not	to	use	them	to	this	day,	relying	instead
on	numerical	equations	and	matrix	algebra.	A	dire	consequence	of	this	is	that,
because	algebraic	equations	are	nondirectional	(that	is,	x	=	y	is	the	same	as	y
=	 x),	 economists	 had	 no	 notational	 means	 to	 distinguish	 causal	 from
regression	equations	and	thus	were	unable	to	answer	policy-related	questions,
even	after	solving	the	equations.	As	late	as	1995,	most	economists	refrained
from	explicitly	attributing	causal	or	counterfactual	meaning	to	their	equations.
Even	 those	 who	 used	 structural	 equations	 for	 policy	 decisions	 remained
incurably	 suspicious	 of	 diagrams,	 which	 could	 have	 saved	 them	 pages	 and
pages	 of	 computation.	Not	 surprisingly,	 some	 economists	 continue	 to	 claim
that	“it’s	all	in	the	data”	to	this	very	day.

For	all	these	reasons,	the	promise	of	path	diagrams	remained	only	partially
realized,	at	best,	until	the	1990s.	In	1983,	Wright	himself	was	called	back	into



the	ring	one	more	time	to	defend	them,	this	time	in	the	American	Journal	of
Human	Genetics.	 At	 the	 time	 he	wrote	 this	 article,	Wright	was	 past	 ninety
years	old.	It	is	both	wonderful	and	tragic	to	read	his	essay,	written	in	1983,	on
the	 very	 same	 topic	 he	 had	written	 about	 in	 1923.	How	many	 times	 in	 the
history	of	science	have	we	had	the	privilege	of	hearing	from	a	theory’s	creator
sixty	years	after	he	first	set	it	down	on	paper?	It	would	be	like	Charles	Darwin
coming	back	 from	 the	grave	 to	 testify	at	 the	Scopes	Monkey	Trial	 in	1925.
But	it	 is	also	tragic,	because	in	the	intervening	sixty	years	his	theory	should
have	developed,	grown,	and	flourished;	instead	it	had	advanced	little	since	the
1920s.

The	 motivation	 for	 Wright’s	 paper	 was	 a	 critique	 of	 path	 analysis,
published	 in	 the	 same	 journal,	by	Samuel	Karlin	 (a	Stanford	mathematician
and	recipient	of	the	1989	National	Medal	of	Science,	who	made	fundamental
contributions	 to	 economics	 and	 population	 genetics)	 and	 two	 coauthors.	Of
interest	to	us	are	two	of	Karlin’s	arguments.

First,	Karlin	objects	to	path	analysis	for	a	reason	that	Niles	did	not	raise:	it
assumes	 that	 all	 the	 relationships	 between	 any	 two	 variables	 in	 the	 path
diagram	 are	 linear.	 This	 assumption	 allows	 Wright	 to	 describe	 the	 causal
relationships	with	a	single	number,	the	path	coefficient.	If	the	equations	were
not	linear,	then	the	effect	on	Y	of	a	one-unit	change	in	X	might	depend	on	the
current	value	of	X.	Neither	Karlin	nor	Wright	realized	that	a	general	nonlinear
theory	was	just	around	the	corner.	(It	would	be	developed	three	years	later	by
a	star	student	in	my	lab,	Thomas	Verma.)

But	Karlin’s	most	interesting	criticism	was	also	the	one	that	he	considered
the	most	 important:	“Finally,	and	we	think	most	fruitfully,	one	can	adopt	an
essentially	model-free	approach,	seeking	to	understand	the	data	interactively
by	 using	 a	 battery	 of	 displays,	 indices,	 and	 contrasts.	 This	 approach
emphasizes	 the	 concept	 of	 robustness	 in	 interpreting	 results.”	 In	 this	 one
sentence	Karlin	articulates	how	 little	had	changed	from	the	days	of	Pearson
and	how	much	 influence	Pearson’s	 ideology	 still	 had	 in	 1983.	He	 is	 saying
that	the	data	themselves	already	contain	all	scientific	wisdom;	they	need	only
be	 cajoled	 and	 massaged	 (by	 “displays,	 indices,	 and	 contrasts”)	 into
dispensing	those	pearls	of	wisdom.	There	is	no	need	for	our	analysis	to	take
into	account	the	process	that	generated	the	data.	We	would	do	just	as	well,	if
not	better,	with	a	“model-free	approach.”	If	Pearson	were	alive	today,	 living
in	 the	era	of	Big	Data,	he	would	say	exactly	 this:	 the	answers	are	all	 in	 the
data.

Of	course,	Karlin’s	statement	violates	everything	we	learned	in	Chapter	1.



To	 speak	 of	 causality,	 we	 must	 have	 a	 mental	 model	 of	 the	 real	 world.	 A
“model-free	 approach”	 may	 take	 us	 to	 the	 first	 rung	 of	 the	 Ladder	 of
Causation,	but	no	farther.

Wright,	 to	his	great	credit,	understood	 the	enormous	stakes	and	stated	 in
no	 uncertain	 terms,	 “In	 treating	 the	 model-free	 approach	 (3)	 as	 preferred
alternative…	Karlin	et	al.	are	urging	not	merely	a	change	 in	method,	but	an
abandonment	 of	 the	 purpose	 of	 path	 analysis	 and	 evaluation	 of	 the	 relative
importance	of	varying	causes.	There	can	be	no	such	analysis	without	a	model.
Their	advice	to	anyone	with	an	urge	to	make	such	an	evaluation	is	to	repress
it	and	do	something	else.”

Wright	understood	that	he	was	defending	the	very	essence	of	the	scientific
method	and	the	interpretation	of	data.	I	would	give	the	same	advice	today	to
big-data,	 model-free	 enthusiasts.	 Of	 course,	 it	 is	 okay	 to	 tease	 out	 all	 the
information	that	the	data	can	provide,	but	let’s	ask	how	far	this	will	get	us.	It
will	never	get	us	beyond	the	first	rung	of	the	Ladder	of	Causation,	and	it	will
never	answer	even	as	simple	a	question	as	“What	is	the	relative	importance	of
various	causes?”	E	pur	si	muove!

FROM	OBJECTIVITY	TO	SUBJECTIVITY—THE	BAYESIAN
CONNECTION

One	 other	 theme	 in	 Wright’s	 rebuttal	 may	 hint	 at	 another	 reason	 for	 the
resistance	 of	 statisticians	 to	 causality.	 He	 repeatedly	 states	 that	 he	 did	 not
want	 path	 analysis	 to	 become	 “stereotyped.”	 According	 to	 Wright,	 “The
unstereotyped	 approach	 of	 path	 analysis	 differs	 profoundly	 from	 the
stereotyped	 modes	 of	 description	 designed	 to	 avoid	 any	 departures	 from
complete	objectivity.”

What	does	he	mean?	First,	he	means	that	path	analysis	should	be	based	on
the	user’s	personal	understanding	of	causal	processes,	reflected	in	the	causal
diagram.	It	cannot	be	reduced	to	mechanical	routines,	such	as	those	laid	out	in
statistics	 manuals.	 For	 Wright,	 drawing	 a	 path	 diagram	 is	 not	 a	 statistical
exercise;	it	is	an	exercise	in	genetics,	economics,	psychology,	or	whatever	the
scientist’s	own	field	of	expertise	is.

Second,	 Wright	 traces	 the	 allure	 of	 “model-free”	 methods	 to	 their
objectivity.	This	has	indeed	been	a	holy	grail	for	statisticians	since	day	one—
or	since	March	15,	1834,	when	the	Statistical	Society	of	London	was	founded.
Its	 founding	 charter	 said	 that	 data	were	 to	 receive	 priority	 in	 all	 cases	 over



opinions	and	interpretations.	Data	are	objective;	opinions	are	subjective.	This
paradigm	 long	 predates	 Pearson.	 The	 struggle	 for	 objectivity—the	 idea	 of
reasoning	 exclusively	 from	data	 and	 experiment—has	 been	 part	 of	 the	way
that	science	has	defined	itself	ever	since	Galileo.

Unlike	 correlation	 and	 most	 of	 the	 other	 tools	 of	 mainstream	 statistics,
causal	analysis	requires	the	user	to	make	a	subjective	commitment.	She	must
draw	a	causal	diagram	that	 reflects	her	qualitative	belief—or,	better	yet,	 the
consensus	belief	of	researchers	in	her	field	of	expertise—about	the	topology
of	the	causal	processes	at	work.	She	must	abandon	the	centuries-old	dogma	of
objectivity	 for	 objectivity’s	 sake.	Where	 causation	 is	 concerned,	 a	 grain	 of
wise	 subjectivity	 tells	 us	 more	 about	 the	 real	 world	 than	 any	 amount	 of
objectivity.

In	 the	above	paragraph,	 I	said	 that	“most	of”	 the	 tools	of	statistics	strive
for	complete	objectivity.	There	is	one	important	exception	to	this	rule,	though.
A	 branch	 of	 statistics	 called	 Bayesian	 statistics	 has	 achieved	 growing
popularity	over	the	last	fifty	years	or	so.	Once	considered	almost	anathema,	it
has	now	gone	completely	mainstream,	and	you	can	attend	an	entire	statistics
conference	without	hearing	any	of	the	great	debates	between	“Bayesians”	and
“frequentists”	that	used	to	thunder	in	the	1960s	and	1970s.

The	 prototype	 of	 Bayesian	 analysis	 goes	 like	 this:	 Prior	 Belief	 +	 New
Evidence	 	Revised	Belief.	For	instance,	suppose	you	toss	a	coin	ten	times
and	find	that	in	nine	of	those	tosses	the	coin	came	up	heads.	Your	belief	that
the	coin	 is	 fair	 is	probably	shaken,	but	how	much?	An	orthodox	statistician
would	 say,	 “In	 the	absence	of	any	additional	evidence,	 I	would	believe	 that
this	 coin	 is	 loaded,	 so	 I	 would	 bet	 nine	 to	 one	 that	 the	 next	 toss	 turns	 up
heads.”

A	Bayesian	statistician,	on	the	other	hand,	would	say,	“Wait	a	minute.	We
also	 need	 to	 take	 into	 account	 our	 prior	 knowledge	 about	 the	 coin.”	Did	 it
come	 from	 the	 neighborhood	 grocery	 or	 a	 shady	 gambler?	 If	 it’s	 just	 an
ordinary	quarter,	most	of	us	would	not	let	the	coincidence	of	nine	heads	sway
our	belief	so	dramatically.	On	the	other	hand,	if	we	already	suspected	the	coin
was	 weighted,	 we	 would	 conclude	 more	 willingly	 that	 the	 nine	 heads
provided	serious	evidence	of	bias.

Bayesian	 statistics	 give	 us	 an	 objective	way	 of	 combining	 the	 observed
evidence	with	our	prior	knowledge	 (or	subjective	belief)	 to	obtain	a	 revised
belief	and	hence	a	revised	prediction	of	 the	outcome	of	 the	coin’s	next	 toss.
Still,	 what	 frequentists	 could	 not	 abide	 was	 that	 Bayesians	 were	 allowing
opinion,	 in	 the	 form	 of	 subjective	 probabilities,	 to	 intrude	 into	 the	 pristine



kingdom	 of	 statistics.	 Mainstream	 statisticians	 were	 won	 over	 only
grudgingly,	 when	Bayesian	 analysis	 proved	 a	 superior	 tool	 for	 a	 variety	 of
applications,	 such	 as	weather	prediction	 and	 tracking	 enemy	 submarines.	 In
addition,	 in	many	 cases	 it	 can	 be	 proven	 that	 the	 influence	 of	 prior	 beliefs
vanishes	 as	 the	 size	 of	 the	 data	 increases,	 leaving	 a	 single	 objective
conclusion	in	the	end.

Unfortunately,	 the	 acceptance	 of	 Bayesian	 subjectivity	 in	 mainstream
statistics	 did	 nothing	 to	 help	 the	 acceptance	 of	 causal	 subjectivity,	 the	 kind
needed	 to	 specify	 a	 path	 diagram.	 Why?	 The	 answer	 rests	 on	 a	 grand
linguistic	barrier.	To	articulate	subjective	assumptions,	Bayesian	statisticians
still	 use	 the	 language	 of	 probability,	 the	 native	 language	 of	 Galton	 and
Pearson.	 The	 assumptions	 entering	 causal	 inference,	 on	 the	 other	 hand,
require	 a	 richer	 language	 (e.g.,	 diagrams)	 that	 is	 foreign	 to	 Bayesians	 and
frequentists	 alike.	 The	 reconciliation	 between	 Bayesians	 and	 frequentists
shows	that	philosophical	barriers	can	be	bridged	with	goodwill	and	a	common
language.	Linguistic	barriers	are	not	surmounted	so	easily.

Moreover,	 the	 subjective	 component	 in	 causal	 information	 does	 not
necessarily	 diminish	 over	 time,	 even	 as	 the	 amount	 of	 data	 increases.	 Two
people	 who	 believe	 in	 two	 different	 causal	 diagrams	 can	 analyze	 the	 same
data	and	may	never	come	to	the	same	conclusion,	regardless	of	how	“big”	the
data	 are.	This	 is	 a	 terrifying	prospect	 for	 advocates	 of	 scientific	 objectivity,
which	explains	their	refusal	to	accept	the	inevitability	of	relying	on	subjective
causal	information.

On	 the	 positive	 side,	 causal	 inference	 is	 objective	 in	 one	 critically
important	 sense:	 once	 two	 people	 agree	 on	 their	 assumptions,	 it	 provides	 a
100	 percent	 objective	 way	 of	 interpreting	 any	 new	 evidence	 (or	 data).	 It
shares	 this	 property	 with	 Bayesian	 inference.	 So	 the	 savvy	 reader	 will
probably	not	be	surprised	to	find	out	that	I	arrived	at	the	theory	of	causality
through	a	circuitous	route	that	started	with	Bayesian	probability	and	then	took
a	 huge	 detour	 through	 Bayesian	 networks.	 I	 will	 tell	 that	 story	 in	 the	 next
chapter.



Sherlock	Holmes	meets	his	modern	counterpart,	a	robot	equipped	with	a	Bayesian
network.	In	different	ways	both	are	tackling	the	question	of	how	to	infer	causes
from	observations.	The	formula	on	the	computer	screen	is	Bayes’s	rule.	(Source:

Drawing	by	Maayan	Harel.)
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FROM	EVIDENCE	TO	CAUSES:
REVEREND	BAYES	MEETS	MR.

HOLMES

Do	two	men	travel	together	unless	they	have	agreed?

Does	the	lion	roar	in	the	forest	if	he	has	no	prey?

—AMOS	3:3

“IT’S	elementary,	my	dear	Watson.”

So	spoke	Sherlock	Holmes	(at	least	in	the	movies)	just	before	dazzling	his
faithful	assistant	with	one	of	his	famously	nonelementary	deductions.	But	in
fact,	Holmes	performed	not	just	deduction,	which	works	from	a	hypothesis	to
a	 conclusion.	 His	 great	 skill	 was	 induction,	 which	 works	 in	 the	 opposite
direction,	from	evidence	to	hypothesis.

Another	 of	 his	 famous	 quotes	 suggests	 his	modus	 operandi:	 “When	you
have	eliminated	the	impossible,	whatever	remains,	however	improbable,	must
be	 the	 truth.”	Having	 induced	 several	 hypotheses,	Holmes	 eliminated	 them
one	 by	 one	 in	 order	 to	 deduce	 (by	 elimination)	 the	 correct	 one.	 Although
induction	 and	 deduction	 go	 hand	 in	 hand,	 the	 former	 is	 by	 far	 the	 more
mysterious.	This	fact	kept	detectives	like	Sherlock	Holmes	in	business.

However,	in	recent	years	experts	in	artificial	intelligence	(AI)	have	made
considerable	 progress	 toward	 automating	 the	 process	 of	 reasoning	 from
evidence	 to	 hypothesis	 and	 likewise	 from	 effect	 to	 cause.	 I	 was	 fortunate



enough	to	participate	in	the	very	earliest	stages	of	this	progress	by	developing
one	of	 its	basic	 tools,	called	Bayesian	networks.	This	chapter	explains	what
these	 are,	 looks	 at	 some	of	 their	 current-day	applications,	 and	discusses	 the
circuitous	route	by	which	they	led	me	to	study	causation.

BONAPARTE,	THE	COMPUTER	DETECTIVE

On	 July	 17,	 2014,	Malaysia	Airlines	 Flight	 17	 took	 off	 from	Amsterdam’s
Schiphol	Airport,	bound	for	Kuala	Lumpur.	Alas,	the	airplane	never	reached
its	 destination.	 Three	 hours	 into	 the	 flight,	 as	 the	 jet	 flew	 over	 eastern
Ukraine,	it	was	shot	down	by	a	Russian-made	surface-to-air	missile.	All	298
people	on	board,	283	passengers	and	15	crew	members,	were	killed.

July	23,	the	day	the	first	bodies	arrived	in	the	Netherlands,	was	declared	a
national	 day	of	mourning.	But	 for	 investigators	 at	 the	Netherlands	Forensic
Institute	 (NFI)	 in	 The	 Hague,	 July	 23	 was	 the	 day	 when	 the	 clock	 started
ticking.	Their	 job	was	 to	 identify	 the	 remains	of	 the	deceased	as	quickly	as
possible	 and	 return	 them	 to	 their	 loved	 ones	 for	 burial.	 Time	 was	 of	 the
essence,	 because	 every	 day	of	 uncertainty	would	 bring	 fresh	 anguish	 to	 the
grieving	families.

The	 investigators	 faced	 many	 obstacles.	 The	 bodies	 had	 been	 badly
burned,	 and	many	were	 stored	 in	 formaldehyde,	which	 breaks	 down	DNA.
Also,	 because	 eastern	 Ukraine	 was	 a	 war	 zone,	 forensics	 experts	 had	 only
sporadic	access	to	the	crash	site.	Newly	recovered	remains	continued	to	arrive
for	ten	more	months.	Finally,	the	investigators	did	not	have	previous	records
of	 the	 victims’	 DNA,	 for	 the	 simple	 reason	 that	 the	 victims	 were	 not
criminals.	 They	 would	 have	 to	 rely	 instead	 on	 partial	 matches	 with	 family
members.

Fortunately,	 the	 scientists	 at	 NFI	 had	 a	 powerful	 tool	 working	 in	 their
favor,	 a	 state-of-the-art	 disaster	 victim	 identification	 program	 called
Bonaparte.	 This	 software,	 developed	 in	 the	 mid-2000s	 by	 a	 team	 from
Radboud	University	 in	Nijmegen,	uses	Bayesian	networks	 to	combine	DNA
information	taken	from	several	different	family	members	of	the	victims.

Thanks	 in	 part	 to	 Bonaparte’s	 accuracy	 and	 speed,	 the	NFI	managed	 to
identify	remains	from	294	of	the	298	victims	by	December	2014.	As	of	2016,
only	two	victims	of	the	crash	(both	Dutch	citizens)	have	vanished	without	a
trace.

Bayesian	 networks,	 the	 machine-reasoning	 tool	 that	 underlies	 the



Bonaparte	 software,	 affect	our	 lives	 in	many	ways	 that	most	people	 are	not
aware	 of.	 They	 are	 used	 in	 speech-recognition	 software,	 in	 spam	 filters,	 in
weather	forecasting,	 in	the	evaluation	of	potential	oil	wells,	and	in	the	Food
and	Drug	Administration’s	approval	process	for	medical	devices.	If	you	play
video	 games	 on	 a	Microsoft	Xbox,	 a	Bayesian	 network	 ranks	 your	 skill.	 If
you	own	a	cell	phone,	the	codes	that	your	phone	uses	to	pick	your	call	out	of
thousands	of	others	are	decoded	by	belief	propagation,	an	algorithm	devised
for	 Bayesian	 networks.	 Vint	 Cerf,	 the	 chief	 Internet	 evangelist	 at	 another
company	 you	might	 have	 heard	 of,	 Google,	 puts	 it	 this	 way:	 “We’re	 huge
consumers	of	Bayesian	methods.”

In	this	chapter	I	will	tell	the	story	of	Bayesian	networks	from	their	roots	in
the	eighteenth	century	to	their	development	in	the	1980s,	and	I	will	give	some
more	 examples	 of	 how	 they	 are	 used	 today.	 They	 are	 related	 to	 causal
diagrams	in	a	simple	way:	a	causal	diagram	is	a	Bayesian	network	in	which
every	arrow	signifies	a	direct	causal	relation,	or	at	least	the	possibility	of	one,
in	 the	 direction	of	 that	 arrow.	Not	 all	Bayesian	networks	 are	 causal,	 and	 in
many	applications	it	does	not	matter.	However,	if	you	ever	want	to	ask	a	rung-
two	or	rung-three	query	about	your	Bayesian	network,	you	must	draw	it	with
scrupulous	attention	to	causality.

REVEREND	BAYES	AND	THE	PROBLEM	OF	INVERSE
PROBABILITY

Thomas	Bayes,	after	whom	I	named	the	networks	in	1985,	never	dreamed	that
a	formula	he	derived	in	the	1750s	would	one	day	be	used	to	identify	disaster
victims.	He	was	concerned	only	with	the	probabilities	of	two	events,	one	(the
hypothesis)	occurring	before	the	other	(the	evidence).	Nevertheless,	causality
was	very	much	on	his	mind.	In	fact,	causal	aspirations	were	the	driving	force
behind	his	analysis	of	“inverse	probability.”

A	 Presbyterian	 minister	 who	 lived	 from	 1702	 to	 1761,	 the	 Reverend
Thomas	Bayes	appears	to	have	been	a	mathematics	geek.	As	a	dissenter	from
the	Church	of	England,	he	could	not	study	at	Oxford	or	Cambridge	and	was
educated	 instead	 at	 the	 University	 of	 Scotland,	 where	 he	 likely	 picked	 up
quite	a	bit	of	math.	He	continued	to	dabble	in	it	and	organize	math	discussion
circles	after	he	returned	to	England.

In	 an	 article	 published	 after	 his	 death	 (see	 Figure	 3.1),	 Bayes	 tackled	 a
problem	that	was	the	perfect	match	for	him,	pitting	math	against	theology.	To
set	the	context,	in	1748,	the	Scottish	philosopher	David	Hume	had	written	an



essay	 titled	 “On	 Miracles,”	 in	 which	 he	 argued	 that	 eyewitness	 testimony
could	 never	 prove	 that	 a	miracle	 had	 happened.	 The	miracle	 Hume	 had	 in
mind	was,	of	course,	the	resurrection	of	Christ,	although	he	was	smart	enough
not	to	say	so.	(Twenty	years	earlier,	theologian	Thomas	Woolston	had	gone	to
prison	 for	 blasphemy	 for	writing	 such	 things.)	Hume’s	main	 point	was	 that
inherently	 fallible	 evidence	 cannot	 overrule	 a	 proposition	with	 the	 force	 of
natural	law,	such	as	“Dead	people	stay	dead.”



FIGURE	3.1.	Title	page	of	the	journal	where	Thomas	Bayes’s	posthumous	article	on

inverse	probability	was	published	and	the	first	page	of	Richard	Price’s
introduction.

For	 Bayes,	 this	 assertion	 provoked	 a	 natural,	 one	 might	 say	 Holmesian
question:	How	much	evidence	would	it	take	to	convince	us	that	something	we
consider	 improbable	 has	 actually	 happened?	When	 does	 a	 hypothesis	 cross
the	line	from	impossibility	to	improbability	and	even	to	probability	or	virtual
certainty?	Although	the	question	was	phrased	in	the	language	of	probability,
the	 implications	 were	 intentionally	 theological.	 Richard	 Price,	 a	 fellow
minister	who	found	the	essay	among	Bayes’s	possessions	after	his	death	and
sent	it	for	publication	with	a	glowing	introduction	that	he	wrote	himself,	made
this	point	abundantly	clear:

The	purpose	I	mean	is,	to	shew	what	reason	we	have	for	believing	that
there	 are	 in	 the	 constitution	 of	 things	 fixt	 laws	 according	 to	 which



things	happen,	and	that,	therefore,	the	frame	of	the	world	must	be	the
effect	 of	 the	 wisdom	 and	 power	 of	 an	 intelligent	 cause;	 and	 thus	 to
confirm	the	argument	 taken	from	final	causes	for	 the	existence	of	 the
Deity.	 It	will	 be	 easy	 to	 see	 that	 the	 converse	problem	 solved	 in	 this
essay	is	more	directly	applicable	to	this	purpose;	for	it	shews	us,	with
distinctness	 and	 precision,	 in	 every	 case	 of	 any	 particular	 order	 or
recurrency	of	events,	what	reason	there	is	to	think	that	such	recurrency
or	order	is	derived	from	stable	causes	or	regulations	in	nature,	and	not
from	any	irregularities	of	chance.

Bayes	himself	did	not	discuss	any	of	 this	 in	his	paper;	Price	highlighted
these	 theological	 implications,	 perhaps	 to	 make	 the	 impact	 of	 his	 friend’s
paper	more	far-reaching.	But	it	turned	out	that	Bayes	didn’t	need	the	help.	His
paper	is	remembered	and	argued	about	250	years	later,	not	for	its	theology	but
because	 it	 shows	 that	 you	 can	 deduce	 the	 probability	 of	 a	 cause	 from	 an
effect.	If	we	know	the	cause,	it	is	easy	to	estimate	the	probability	of	the	effect,
which	is	a	forward	probability.	Going	the	other	direction—a	problem	known
in	 Bayes’s	 time	 as	 “inverse	 probability”—is	 harder.	 Bayes	 did	 not	 explain
why	 it	 is	 harder;	 he	 took	 that	 as	 self-evident,	 proved	 that	 it	 is	 doable,	 and
showed	us	how.

To	 appreciate	 the	 nature	 of	 the	 problem,	 let’s	 look	 at	 the	 example	 he
suggested	himself	in	his	posthumous	paper	of	1763.	Imagine	that	we	shoot	a
billiard	 ball	 on	 a	 table,	making	 sure	 that	 it	 bounces	many	 times	 so	 that	we
have	 no	 idea	where	 it	will	 end	 up.	What	 is	 the	 probability	 that	 it	will	 stop
within	x	 feet	of	 the	 left-hand	end	of	 the	 table?	If	we	know	the	 length	of	 the
table	and	it	 is	perfectly	smooth	and	flat,	 this	 is	a	very	easy	question	(Figure
3.2,	top).	For	example,	on	a	twelve-foot	snooker	table,	the	probability	of	the
ball	stopping	within	a	foot	of	the	end	would	be	1/12.	On	an	eight-foot	billiard
table,	the	probability	would	be	1/8.



FIGURE	3.2.	Thomas	Bayes’s	pool	table	example.	In	the	first	version,	a	forward-

probability	question,	we	know	the	length	of	the	table	and	want	to	calculate	the
probability	of	the	ball	stopping	within	x	feet	of	the	end.	In	the	second,	an	inverse-
probability	question,	we	observe	that	the	ball	stopped	x	feet	from	the	end	and	want
to	estimate	the	likelihood	that	the	table’s	length	is	L.	(Source:	Drawing	by	Maayan

Harel.)

Our	 intuitive	understanding	of	 the	physics	 tells	us	 that,	 in	general,	 if	 the
length	of	the	table	is	L	feet,	the	probability	of	the	ball’s	stopping	within	x	feet
of	 the	end	 is	x/L.	The	 longer	 the	 table	 length	 (L),	 the	 lower	 the	probability,
because	there	are	more	positions	competing	for	the	honor	of	being	the	ball’s
resting	 place.	On	 the	 other	 hand,	 the	 larger	 x	 is,	 the	 higher	 the	 probability,
because	it	includes	a	larger	set	of	stopping	positions.

Now	 consider	 the	 inverse-probability	 problem.	 We	 observe	 the	 final
position	of	 the	ball	 to	be	x	=	1	 foot	 from	 the	end,	but	we	are	not	given	 the
length	L	(Figure	3.2,	bottom).	Reverend	Bayes	asked,	What	is	the	probability
that	 the	 length	was,	 say,	one	hundred	 feet?	Common	sense	 tells	us	 that	L	 is
more	 likely	 to	 be	 fifty	 feet	 than	 one	 hundred	 feet,	 because	 the	 longer	 table
makes	it	harder	to	explain	why	the	ball	ended	up	so	close	to	the	end.	But	how
much	 more	 likely	 is	 it?	 “Intuition”	 or	 “common	 sense”	 gives	 us	 no	 clear



guidance.

Why	was	the	forward	probability	(of	x	given	L)	so	much	easier	 to	assess
mentally	 than	 the	probability	of	L	given	x?	 In	 this	 example,	 the	 asymmetry
comes	from	the	fact	that	L	acts	as	the	cause	and	x	is	the	effect.	If	we	observe	a
cause—for	example,	Bobby	throws	a	ball	toward	a	window—most	of	us	can
predict	the	effect	(the	ball	will	probably	break	the	window).	Human	cognition
works	in	this	direction.	But	given	the	effect	(the	window	is	broken),	we	need
much	more	 information	 to	 deduce	 the	 cause	 (which	boy	 threw	 the	ball	 that
broke	it	or	even	the	fact	that	it	was	broken	by	a	ball	in	the	first	place).	It	takes
the	mind	of	a	Sherlock	Holmes	to	keep	track	of	all	the	possible	causes.	Bayes
set	 out	 to	 break	 this	 cognitive	 asymmetry	 and	 explain	 how	 even	 ordinary
humans	can	assess	inverse	probabilities.

To	see	how	Bayes’s	method	works,	let’s	start	with	a	simple	example	about
customers	 in	 a	 teahouse,	 for	 whom	 we	 have	 data	 documenting	 their
preferences.	Data,	as	we	know	from	Chapter	1,	are	totally	oblivious	to	cause-
effect	 asymmetries	 and	hence	 should	 offer	 us	 a	way	 to	 resolve	 the	 inverse-
probability	puzzle.

Suppose	two-thirds	of	the	customers	who	come	to	the	shop	order	tea,	and
half	of	the	tea	drinkers	also	order	scones.	What	fraction	of	the	clientele	orders
both	 tea	 and	 scones?	 There’s	 no	 trick	 to	 this	 question,	 and	 I	 hope	 that	 the
answer	is	almost	obvious.	Because	half	of	 two-thirds	 is	one-third,	 it	 follows
that	one-third	of	the	customers	order	both	tea	and	scones.

For	a	numerical	illustration,	suppose	that	we	tabulate	the	orders	of	the	next
twelve	 customers	who	come	 in	 the	door.	As	Table	3.1	 shows,	 two-thirds	 of
the	 customers	 (1,	 5,	 6,	 7,	 8,	 9,	 10,	 12)	 ordered	 tea,	 and	 one-half	 of	 those
people	 ordered	 scones	 (1,	 5,	 8,	 12).	 So	 the	 proportion	 of	 customers	 who
ordered	both	tea	and	scones	is	indeed	(1/2)	×	(2/3)	=	1/3,	just	as	we	predicted
prior	to	seeing	the	specific	data.

TABLE	3.1.	Fictitious	data	for	the	tea-scones	example.



The	starting	point	for	Bayes’s	rule	is	to	notice	that	we	could	have	analyzed
the	 data	 in	 the	 reverse	 order.	 That	 is,	 we	 could	 have	 observed	 that	 five-
twelfths	 of	 the	 customers	 (1,	 2,	 5,	 8,	 12)	 ordered	 scones,	 and	 four-fifths	 of
these	 (1,	5,	8,	12)	ordered	 tea.	So	 the	proportion	of	 customers	who	ordered
both	tea	and	scones	is	(4/5)	×	(5/12)	=	1/3.	Of	course	it’s	no	coincidence	that
it	 came	out	 the	 same;	we	were	merely	 computing	 the	 same	quantity	 in	 two
different	 ways.	 The	 temporal	 order	 in	 which	 the	 customers	 announce	 their
order	makes	no	difference.

To	make	this	a	general	rule,	we	can	let	P(T)	denote	the	probability	that	a
customer	orders	 tea	and	P(S)	denote	 the	probability	he	orders	 scones.	 If	we
already	know	a	customer	has	ordered	tea,	then	P(S	|	T)	denotes	the	probability
that	 he	 orders	 scones.	 (Remember	 that	 the	 vertical	 line	 stands	 for	 “given
that.”)	Likewise,	P(T	|	S)	denotes	the	probability	that	he	orders	tea,	given	that
we	already	know	he	ordered	scones.	Then	the	first	calculation	we	did	says,

P(S	AND	T)	=	P(S	|	T)	P(T).

The	second	calculation	says,

P(S	AND	T)	=	P(T	|	S)	P(S).

Now,	 as	Euclid	 said	 2,300	 years	 ago,	 two	 things	 that	 each	 equal	 a	 third
thing	also	equal	one	another.	That	means	it	must	be	the	case	that

P(S	|	T)	P(T)	=	P(T	|	S)	P(S)									(3.1)

This	innocent-looking	equation	came	to	be	known	as	“Bayes’s	rule.”	If	we
look	carefully	at	what	it	says,	we	find	that	it	offers	a	general	solution	to	the
inverse-probability	 problem.	 It	 tells	 us	 that	 if	we	know	 the	 probability	 of	S
given	T,	P(S	|	T),	we	ought	to	be	able	to	figure	out	the	probability	of	T	given
S,	P(T	 |	S),	assuming	of	course	that	we	know	P(T)	and	P(S).	This	is	perhaps
the	 most	 important	 role	 of	 Bayes’s	 rule	 in	 statistics:	 we	 can	 estimate	 the
conditional	 probability	 directly	 in	 one	 direction,	 for	which	 our	 judgment	 is
more	reliable,	and	use	mathematics	to	derive	the	conditional	probability	in	the
other	 direction,	 for	 which	 our	 judgment	 is	 rather	 hazy.	 The	 equation	 also
plays	 this	 role	 in	 Bayesian	 networks;	 we	 tell	 the	 computer	 the	 forward
probabilities,	and	the	computer	tells	us	the	inverse	probabilities	when	needed.

To	 see	 how	 Bayes’s	 rule	 works	 in	 the	 teahouse	 example,	 suppose	 you
didn’t	 bother	 to	 calculate	P(T	 |	S)	 and	 left	 your	 spreadsheet	 containing	 the
data	at	home.	However,	you	happen	to	remember	that	half	of	those	who	order
tea	 also	 order	 scones,	 and	 two-thirds	 of	 the	 customers	 order	 tea	 and	 five-
twelfths	 order	 scones.	 Unexpectedly,	 your	 boss	 asks	 you,	 “But	 what
proportion	of	scone	eaters	order	tea?”	There’s	no	need	to	panic,	because	you



can	work	 it	 out	 from	 the	other	probabilities.	Bayes’s	 rule	 says	 that	P(T	 |	S)
(5/12)	=	(1/2)(2/3),	so	your	answer	is	P(T	 |	S)	=	4/5,	because	4/5	is	the	only
value	for	P(T	|	S)	that	will	make	this	equation	true.

We	 can	 also	 look	 at	 Bayes’s	 rule	 as	 a	 way	 to	 update	 our	 belief	 in	 a
particular	 hypothesis.	 This	 is	 extremely	 important	 to	 understand,	 because	 a
large	 part	 of	 human	 belief	 about	 future	 events	 rests	 on	 the	 frequency	with
which	 they	 or	 similar	 events	 have	 occurred	 in	 the	 past.	 Indeed,	 when	 a
customer	walks	 in	 the	door	of	 the	 restaurant,	we	believe,	based	on	our	past
encounters	with	similar	customers,	that	she	probably	wants	tea.	But	if	she	first
orders	scones,	we	become	even	more	certain.	In	fact,	we	might	even	suggest
it:	 “I	 presume	 you	 want	 tea	 with	 that?”	 Bayes’s	 rule	 simply	 lets	 us	 attach
numbers	 to	 this	 reasoning	 process.	 From	 Table	 3.1,	 we	 see	 that	 the	 prior
probability	that	the	customer	wants	tea	(meaning	when	she	walks	in	the	door,
before	she	orders	anything)	 is	 two-thirds.	But	 if	 the	customer	orders	scones,
now	we	have	additional	information	about	her	that	we	didn’t	have	before.	The
updated	probability	 that	she	wants	 tea,	given	 that	she	has	ordered	scones,	 is
P(T	|	S)	=	4/5.

Mathematically,	that’s	all	there	is	to	Bayes’s	rule.	It	seems	almost	trivial.	It
involves	nothing	more	than	the	concept	of	conditional	probability,	plus	a	little
dose	 of	 ancient	 Greek	 logic.	 You	 might	 justifiably	 ask	 how	 such	 a	 simple
gimmick	could	make	Bayes	famous	and	why	people	have	argued	over	his	rule
for	 250	 years.	 After	 all,	 mathematical	 facts	 are	 supposed	 to	 settle
controversies,	not	create	them.

Here	I	must	confess	that	in	the	teahouse	example,	by	deriving	Bayes’s	rule
from	 data,	 I	 have	 glossed	 over	 two	 profound	 objections,	 one	 philosophical
and	the	other	practical.	The	philosophical	one	stems	from	the	interpretation	of
probabilities	as	a	degree	of	belief,	which	we	used	 implicitly	 in	 the	 teahouse
example.	Who	ever	said	that	beliefs	act,	or	should	act,	like	proportions	in	the
data?

The	 crux	 of	 the	 philosophical	 debate	 is	 whether	 we	 can	 legitimately
translate	the	expression	“given	that	I	know”	into	the	language	of	probabilities.
Even	 if	 we	 agree	 that	 the	 unconditional	 probabilities	 P(S),	 P(T),	 and	 P(S
AND	T)	reflect	my	degree	of	belief	 in	those	propositions,	who	says	that	my
revised	 degree	 of	 belief	 in	 T	 should	 equal	 the	 ratio	 P(S	 AND	 T)/P(T),	 as
dictated	by	Bayes’s	rule?	Is	“given	that	I	know	T”	the	same	as	“among	cases
where	T	 occurred”?	The	 language	 of	 probability,	 expressed	 in	 symbols	 like
P(S),	was	intended	to	capture	the	concept	of	frequencies	in	games	of	chance.
But	 the	 expression	 “given	 that	 I	 know”	 is	 epistemological	 and	 should	 be



governed	by	the	logic	of	knowledge,	not	that	of	frequencies	and	proportions.

From	the	philosophical	perspective,	Thomas	Bayes’s	accomplishment	lies
in	 his	 proposing	 the	 first	 formal	 definition	 of	 conditional	 probability	 as	 the
ratio	P(S	|	T)	=	P(S	AND	T)/P(T).	His	essay	was	admittedly	hazy;	he	has	no
term	 “conditional	 probability”	 and	 instead	 uses	 the	 cumbersome	 language
“the	probability	of	the	2nd	[event]	on	supposition	that	the	1st	happens.”	The
recognition	 that	 the	 relation	 “given	 that”	 deserves	 its	 own	 symbol	 evolved
only	in	the	1880s,	and	it	was	not	until	1931	that	Harold	Jeffreys	(known	more
as	 a	 geophysicist	 than	 a	 probability	 theorist)	 introduced	 the	 now	 standard
vertical	bar	in	P(S	|	T).

As	 we	 saw,	 Bayes’s	 rule	 is	 formally	 an	 elementary	 consequence	 of	 his
definition	 of	 conditional	 probability.	 But	 epistemologically,	 it	 is	 far	 from
elementary.	It	acts,	in	fact,	as	a	normative	rule	for	updating	beliefs	in	response
to	 evidence.	 In	 other	 words,	 we	 should	 view	 Bayes’s	 rule	 not	 just	 as	 a
convenient	definition	of	 the	new	concept	of	“conditional	probability”	but	as
an	empirical	claim	to	faithfully	represent	the	English	expression	“given	that	I
know.”	It	asserts,	among	other	things,	 that	 the	belief	a	person	attributes	to	S
after	 discovering	 T	 is	 never	 lower	 than	 the	 degree	 of	 belief	 that	 person
attributes	 to	 S	 AND	T	 before	 discovering	T.	 Also,	 it	 implies	 that	 the	more
surprising	 the	evidence	T—that	 is,	 the	smaller	P(T)	 is—the	more	convinced
one	should	become	of	its	cause	S.	No	wonder	Bayes	and	his	friend	Price,	as
Episcopal	 ministers,	 saw	 this	 as	 an	 effective	 rejoinder	 to	 Hume.	 If	 T	 is	 a
miracle	 (“Christ	 rose	 from	 the	dead”),	 and	S	 is	 a	 closely	 related	 hypothesis
(“Christ	 is	 the	 son	 of	God”),	 our	 degree	 of	 belief	 in	S	 is	 very	 dramatically
increased	 if	 we	 know	 for	 a	 fact	 that	 T	 is	 true.	 The	 more	 miraculous	 the
miracle,	 the	more	 credible	 the	 hypothesis	 that	 explains	 its	 occurrence.	 This
explains	why	 the	writers	 of	 the	New	Testament	were	 so	 impressed	 by	 their
eyewitness	evidence.

Now	let	me	discuss	the	practical	objection	to	Bayes’s	rule—which	may	be
even	more	 consequential	when	we	 exit	 the	 realm	of	 theology	 and	 enter	 the
realm	of	science.	If	we	try	to	apply	the	rule	to	the	billiard-ball	puzzle,	in	order
to	find	P(L	|	x)	we	need	a	quantity	that	is	not	available	to	us	from	the	physics
of	billiard	balls:	we	need	the	prior	probability	of	the	length	L,	which	is	every
bit	as	tough	to	estimate	as	our	desired	P(L	|	x).	Moreover,	this	probability	will
vary	 significantly	 from	person	 to	person,	depending	on	a	given	 individual’s
previous	experience	with	tables	of	different	lengths.	A	person	who	has	never
in	his	life	seen	a	snooker	table	would	be	very	doubtful	that	L	could	be	longer
than	 ten	 feet.	A	person	who	has	 only	 seen	 snooker	 tables	 and	never	 seen	 a
billiard	table	would,	on	the	other	hand,	give	a	very	low	prior	probability	to	L



being	 less	 than	 ten	 feet.	 This	 variability,	 also	 known	 as	 “subjectivity,”	 is
sometimes	seen	as	a	deficiency	of	Bayesian	 inference.	Others	 regard	 it	 as	a
powerful	 advantage;	 it	 permits	 us	 to	 express	 our	 personal	 experience
mathematically	and	combine	it	with	data	in	a	principled	and	transparent	way.
Bayes’s	rule	informs	our	reasoning	in	cases	where	ordinary	intuition	fails	us
or	where	emotion	might	lead	us	astray.	We	will	demonstrate	this	power	in	a
situation	familiar	to	all	of	us.

Suppose	you	take	a	medical	test	to	see	if	you	have	a	disease,	and	it	comes
back	positive.	How	likely	is	it	that	you	have	the	disease?	For	specificity,	let’s
say	the	disease	is	breast	cancer,	and	the	test	is	a	mammogram.	In	this	example
the	 forward	 probability	 is	 the	 probability	 of	 a	 positive	 test,	 given	 that	 you
have	 the	 disease:	 P(test	 |	 disease).	 This	 is	 what	 a	 doctor	 would	 call	 the
“sensitivity”	of	the	test,	or	its	ability	to	correctly	detect	an	illness.	Generally	it
is	the	same	for	all	types	of	patients,	because	it	depends	only	on	the	technical
capability	of	the	testing	instrument	to	detect	the	abnormalities	associated	with
the	 disease.	The	 inverse	 probability	 is	 the	 one	 you	 surely	 care	more	 about:
What	 is	 the	probability	 that	 I	have	 the	disease,	given	 that	 the	 test	 came	out
positive?	This	 is	P(disease	 |	 test),	and	 it	 represents	a	 flow	of	 information	 in
the	 noncausal	 direction,	 from	 the	 result	 of	 the	 test	 to	 the	 probability	 of
disease.	This	probability	is	not	necessarily	the	same	for	all	types	of	patients;
we	would	certainly	view	the	positive	test	with	more	alarm	in	a	patient	with	a
family	history	of	the	disease	than	in	one	with	no	such	history.

Notice	that	we	have	started	to	talk	about	causal	and	noncausal	directions.
We	 didn’t	 do	 that	 in	 the	 teahouse	 example	 because	 it	 did	 not	matter	which
came	first,	ordering	tea	or	ordering	scones.	It	only	mattered	which	conditional
probability	we	felt	more	capable	of	assessing.	But	the	causal	setting	clarifies
why	we	feel	less	comfortable	assessing	the	“inverse	probability,”	and	Bayes’s
essay	makes	clear	that	this	is	exactly	the	sort	of	problem	that	interested	him.

Suppose	a	 forty-year-old	woman	gets	a	mammogram	to	check	 for	breast
cancer,	and	it	comes	back	positive.	The	hypothesis,	D	(for	“disease”),	is	that
she	has	cancer.	The	evidence,	T	(for	“test”),	is	the	result	of	the	mammogram.
How	strongly	should	she	believe	the	hypothesis?	Should	she	have	surgery?

We	can	answer	these	questions	by	rewriting	Bayes’s	rule	as	follows:

(Updated	probability	of	D)	=	P(D	|	T)	=	(likelihood	ratio)	×	(prior	probability
of	D)									(3.2)

where	the	new	term	“likelihood	ratio”	is	given	by	P(T	|	D)/P(T).	It	measures
how	much	more	likely	 the	positive	 test	 is	 in	people	with	 the	disease	 than	in



the	general	population.	Equation	3.2	therefore	tells	us	that	the	new	evidence	T
augments	 the	 probability	 of	D	 by	 a	 fixed	 ratio,	 no	 matter	 what	 the	 prior
probability	was.

Let’s	 do	 an	 example	 to	 see	 how	 this	 important	 concept	 works.	 For	 a
typical	 forty-year-old	woman,	 the	probability	of	getting	breast	cancer	 in	 the
next	 year	 is	 about	 one	 in	 seven	 hundred,	 so	 we’ll	 use	 that	 as	 our	 prior
probability.

To	compute	the	likelihood	ratio,	we	need	to	know	P(T	|	D)	and	P(T).	In	the
medical	 context,	 P(T	 |	 D)	 is	 the	 sensitivity	 of	 the	 mammogram—the
probability	 that	 it	will	come	back	positive	 if	you	have	cancer.	According	 to
the	 Breast	 Cancer	 Surveillance	 Consortium	 (BCSC),	 the	 sensitivity	 of
mammograms	for	forty-year-old	women	is	73	percent.

The	denominator,	P(T),	is	a	bit	trickier.	A	positive	test,	T,	can	come	both
from	patients	who	have	the	disease	and	from	patients	who	don’t.	Thus,	P(T)
should	be	a	weighted	average	of	P(T	 |	D)	 (the	probability	 of	 a	 positive	 test
among	 those	 who	 have	 the	 disease)	 and	 P(T	 |	 ~D)	 (the	 probability	 of	 a
positive	 test	 among	 those	 who	 don’t).	 The	 second	 is	 known	 as	 the	 false
positive	rate.	According	to	the	BCSC,	the	false	positive	rate	for	forty-year-old
women	is	about	12	percent.

Why	a	weighted	average?	Because	 there	are	many	more	healthy	women
(~D)	than	women	with	cancer	(D).	In	fact,	only	1	in	700	women	has	cancer,
and	the	other	699	do	not,	so	the	probability	of	a	positive	test	for	a	randomly
chosen	woman	should	be	much	more	strongly	influenced	by	the	699	women
who	don’t	have	cancer	than	by	the	one	woman	who	does.

Mathematically,	 we	 compute	 the	 weighted	 average	 as	 follows:	 P(T)	 =
(1/700)	×	(73	percent)	+	(699/700)	×	(12	percent)	≈	12.1	percent.	The	weights
come	 about	 because	 only	 1	 in	 700	 women	 has	 a	 73	 percent	 chance	 of	 a
positive	 test,	and	the	other	699	have	a	12	percent	chance.	Just	as	you	might
expect,	P(T)	came	out	very	close	to	the	false	positive	rate.

Now	that	we	know	P(T),	we	finally	can	compute	the	updated	probability
—the	 woman’s	 chances	 of	 having	 breast	 cancer	 after	 the	 test	 comes	 back
positive.	The	likelihood	ratio	is	73	percent/12.1	percent	≈	6.	As	I	said	before,
this	 is	 the	factor	by	which	we	augment	her	prior	probability	 to	compute	her
updated	probability	of	having	cancer.	Since	her	prior	probability	was	one	 in
seven	hundred,	her	updated	probability	is	6	×	1/700	≈	1/116.	In	other	words,
she	still	has	less	than	a	1	percent	chance	of	having	cancer.

The	 conclusion	 is	 startling.	 I	 think	 that	most	 forty-year-old	women	who



have	a	positive	mammogram	would	be	astounded	to	learn	that	they	still	have
less	than	a	1	percent	chance	of	having	breast	cancer.	Figure	3.3	might	make
the	reason	easier	to	understand:	the	tiny	number	of	true	positives	(i.e.,	women
with	 breast	 cancer)	 is	 overwhelmed	 by	 the	 number	 of	 false	 positives.	 Our
sense	of	surprise	at	 this	 result	comes	 from	the	common	cognitive	confusion
between	 the	 forward	 probability,	 which	 is	 well	 studied	 and	 thoroughly
documented,	 and	 the	 inverse	 probability,	 which	 is	 needed	 for	 personal
decision	making.

The	 conflict	 between	 our	 perception	 and	 reality	 partially	 explains	 the
outcry	when	the	US	Preventive	Services	Task	Force,	in	2009,	recommended
that	 forty-year-old	 women	 should	 not	 get	 annual	 mammograms.	 The	 task
force	understood	what	many	women	did	not:	a	positive	test	at	that	age	is	way
more	likely	to	be	a	false	alarm	than	to	detect	cancer,	and	many	women	were
unnecessarily	terrified	(and	getting	unnecessary	treatment)	as	a	result.

FIGURE	3.3.	In	this	example,	based	on	false-positive	and	false-negative	rates

provided	by	the	Breast	Cancer	Surveillance	Consortium,	only	3	out	of	363	forty-



year-old	women	who	test	positive	for	breast	cancer	actually	have	the	disease.
(Proportions	do	not	exactly	match	the	text	because	of	rounding.)	(Source:

Infographic	by	Maayan	Harel.)

However,	the	story	would	be	very	different	if	our	patient	had	a	gene	that
put	her	at	high	risk	for	breast	cancer—say,	a	one-in-twenty	chance	within	the
next	year.	Then	a	positive	test	would	increase	the	probability	to	almost	one	in
three.	 For	 a	 woman	 in	 this	 situation,	 the	 chances	 that	 the	 test	 provides
lifesaving	information	are	much	higher.	That	is	why	the	task	force	continued
to	recommend	annual	mammograms	for	high-risk	women.

This	example	shows	that	P(disease	|	test)	is	not	the	same	for	everyone;	it	is
context	dependent.	If	you	know	that	you	are	at	high	risk	for	a	disease	to	begin
with,	Bayes’s	 rule	 allows	you	 to	 factor	 that	 information	 in.	Or	 if	 you	know
that	 you	 are	 immune,	 you	 need	 not	 even	 bother	 with	 the	 test!	 In	 contrast,
P(test	|	disease)	does	not	depend	on	whether	you	are	at	high	risk	or	not.	It	is
“robust”	 to	 such	 variations,	which	 explains	 to	 some	 degree	why	 physicians
organize	 their	 knowledge	 and	 communicate	with	 forward	 probabilities.	 The
former	 are	 properties	 of	 the	 disease	 itself,	 its	 stage	 of	 progression,	 or	 the
sensitivity	of	the	detecting	instruments;	hence	they	remain	relatively	invariant
to	the	reasons	for	the	disease	(epidemic,	diet,	hygiene,	socioeconomic	status,
family	history).	The	inverse	probability,	P(disease	|	test),	is	sensitive	to	these
conditions.

The	 history-minded	 reader	 will	 surely	 wonder	 how	 Bayes	 handled	 the
subjectivity	of	P(L),	where	L	is	the	length	of	a	billiard	table.	The	answer	has
two	parts.	First,	Bayes	was	interested	not	in	the	length	of	the	table	per	se	but
in	its	future	consequences	(i.e.,	the	probability	that	the	next	ball	would	end	up
at	 some	 specified	 location	 on	 the	 table).	 Second,	 Bayes	 assumed	 that	 L	 is
determined	mechanically	by	shooting	a	billiard	ball	 from	a	greater	distance,
say	L*.	 In	 this	way	 he	 bestowed	 objectivity	 onto	P(L)	 and	 transformed	 the
problem	into	one	where	prior	probabilities	are	estimable	from	data,	as	we	see
in	the	teahouse	and	cancer	test	examples.

In	many	ways,	Bayes’s	rule	is	a	distillation	of	the	scientific	method.	The
textbook	 description	 of	 the	 scientific	 method	 goes	 something	 like	 this:	 (1)
formulate	a	hypothesis,	(2)	deduce	a	testable	consequence	of	the	hypothesis,
(3)	perform	an	experiment	and	collect	evidence,	and	(4)	update	your	belief	in
the	 hypothesis.	 Usually	 the	 textbooks	 deal	 with	 simple	 yes-or-no	 tests	 and
updates;	 the	evidence	either	confirms	or	 refutes	 the	hypothesis.	But	 life	and
science	 are	 never	 so	 simple!	 All	 evidence	 comes	with	 a	 certain	 amount	 of
uncertainty.	Bayes’s	rule	tells	us	how	to	perform	step	(4)	in	the	real	world.



FROM	BAYES’S	RULE	TO	BAYESIAN	NETWORKS

In	the	early	1980s,	the	field	of	artificial	intelligence	had	worked	itself	into	a
cul-de-sac.	 Ever	 since	 Alan	 Turing	 first	 laid	 out	 the	 challenge	 in	 his	 1950
paper	 “Computing	Machinery	and	 Intelligence,”	 the	 leading	approach	 to	AI
had	 been	 so-called	 rule-based	 systems	 or	 expert	 systems,	 which	 organize
human	 knowledge	 as	 a	 collection	 of	 specific	 and	 general	 facts,	 along	 with
inference	 rules	 to	 connect	 them.	 For	 example:	 Socrates	 is	 a	 man	 (specific
fact).	All	men	are	mortals	(general	fact).	From	this	knowledge	base	we	(or	an
intelligent	machine)	 can	 derive	 the	 fact	 that	 Socrates	 is	 a	mortal,	 using	 the
universal	rule	of	inference:	if	all	A’s	are	B’s,	and	x	is	an	A,	then	x	is	a	B.

The	approach	was	fine	in	theory,	but	hard-and-fast	rules	can	rarely	capture
real-life	knowledge.	Perhaps	without	realizing	it,	we	deal	with	exceptions	to
rules	 and	 uncertainties	 in	 evidence	 all	 the	 time.	 By	 1980,	 it	 was	 clear	 that
expert	 systems	 struggled	 with	 making	 correct	 inferences	 from	 uncertain
knowledge.	 The	 computer	 could	 not	 replicate	 the	 inferential	 process	 of	 a
human	expert	because	the	experts	themselves	were	not	able	to	articulate	their
thinking	process	within	the	language	provided	by	the	system.

The	late	1970s,	then,	were	a	time	of	ferment	in	the	AI	community	over	the
question	 of	 how	 to	 deal	 with	 uncertainty.	 There	 was	 no	 shortage	 of	 ideas.
Lotfi	Zadeh	of	Berkeley	offered	“fuzzy	logic,”	in	which	statements	are	neither
true	nor	false	but	instead	take	a	range	of	possible	truth	values.	Glen	Shafer	of
the	 University	 of	 Kansas	 proposed	 “belief	 functions,”	 which	 assign	 two
probabilities	to	each	fact,	one	indicating	how	likely	it	is	to	be	“possible,”	the
other,	 how	 likely	 it	 is	 to	 be	 “provable.”	 Edward	 Feigenbaum	 and	 his
colleagues	 at	 Stanford	 University	 tried	 “certainty	 factors,”	 which	 inserted
numerical	measures	of	uncertainty	into	their	deterministic	rules	for	inference.

Unfortunately,	 although	 ingenious,	 these	 approaches	 suffered	 a	 common
flaw:	they	modeled	the	expert,	not	the	world,	and	therefore	tended	to	produce
unintended	results.	For	example,	they	could	not	operate	in	both	diagnostic	and
predictive	modes,	 the	uncontested	specialty	of	Bayes’s	 rule.	 In	 the	certainty
factor	 approach,	 the	 rule	 “If	 fire,	 then	 smoke	 (with	 certainty	c1)”	 could	 not
combine	 coherently	 with	 “If	 smoke,	 then	 fire	 (with	 certainty	 c2)”	 without
triggering	a	runaway	buildup	of	belief.

Probability	was	 also	 considered	 at	 the	 time	 but	 immediately	 fell	 into	 ill
repute,	 since	 the	 demands	 on	 storage	 space	 and	 processing	 time	 became
formidable.	 I	 entered	 the	 arena	 rather	 late,	 in	 1982,	 with	 an	 obvious	 yet
radical	proposal:	instead	of	reinventing	a	new	uncertainty	theory	from	scratch,



let’s	 keep	 probability	 as	 a	 guardian	 of	 common	 sense	 and	merely	 repair	 its
computational	 deficiencies.	 More	 specifically,	 instead	 of	 representing
probability	 in	 huge	 tables,	 as	was	 previously	 done,	 let’s	 represent	 it	with	 a
network	 of	 loosely	 coupled	 variables.	 If	 we	 only	 allow	 each	 variable	 to
interact	 with	 a	 few	 neighboring	 variables,	 then	 we	 might	 overcome	 the
computational	hurdles	that	had	caused	other	probabilists	to	stumble.

The	idea	did	not	come	to	me	in	a	dream;	it	came	from	an	article	by	David
Rumelhart,	a	cognitive	scientist	at	University	of	California,	San	Diego,	and	a
pioneer	of	neural	networks.	His	article	about	children’s	reading,	published	in
1976,	made	clear	that	reading	is	a	complex	process	in	which	neurons	on	many
different	 levels	 are	 active	 at	 the	 same	 time	 (see	 Figure	 3.4).	 Some	 of	 the
neurons	 are	 simply	 recognizing	 individual	 features—circles	 or	 lines.	Above
them,	 another	 layer	 of	 neurons	 is	 combining	 these	 shapes	 and	 forming
conjectures	 about	 what	 the	 letter	 might	 be.	 In	 Figure	 3.4,	 the	 network	 is
struggling	with	a	great	deal	of	ambiguity	about	the	second	word.	At	the	letter
level,	it	could	be	“FHP,”	but	that	doesn’t	make	much	sense	at	the	word	level.
At	 the	word	level	 it	could	be	“FAR”	or	“CAR”	or	“FAT.”	The	neurons	pass
this	 information	up	 to	 the	 syntactic	 level,	which	decides	 that	 after	 the	word
“THE,”	it’s	expecting	a	noun.	Finally	this	information	gets	passed	all	the	way
up	to	the	semantic	level,	which	realizes	that	the	previous	sentence	mentioned
a	 Volkswagen,	 so	 the	 phrase	 is	 likely	 to	 be	 “THE	 CAR,”	 referring	 to	 that
same	 Volkswagen.	 The	 key	 point	 is	 that	 all	 the	 neurons	 are	 passing
information	back	and	forth,	 from	the	 top	down	and	from	the	bottom	up	and
from	side	to	side.	It’s	a	highly	parallel	system,	and	one	that	is	quite	different
from	 our	 self-perception	 of	 the	 brain	 as	 a	 monolithic,	 centrally	 controlled
system.

Reading	Rumelhart’s	paper,	I	felt	convinced	that	any	artificial	intelligence
would	have	to	model	itself	on	what	we	know	about	human	neural	information
processing	 and	 that	machine	 reasoning	 under	 uncertainty	would	 have	 to	 be
constructed	 with	 a	 similar	 message-passing	 architecture.	 But	 what	 are	 the
messages?	This	 took	me	quite	a	 few	months	 to	 figure	out.	 I	 finally	 realized
that	 the	 messages	 were	 conditional	 probabilities	 in	 one	 direction	 and
likelihood	ratios	in	the	other.



FIGURE	3.4.	David	Rumelhart’s	sketch	of	how	a	message-passing	network	would

learn	to	read	the	phrase	“THE	CAR.”	(Source:	Courtesy	of	Center	for	Brain	and
Cognition,	University	of	California,	San	Diego.)

More	 precisely,	 I	 assumed	 that	 the	 network	would	 be	 hierarchical,	 with
arrows	pointing	from	higher	neurons	to	lower	ones,	or	from	“parent	nodes”	to
“child	 nodes.”	 Each	 node	 would	 send	 a	 message	 to	 all	 its	 neighbors	 (both
above	and	below	in	the	hierarchy)	about	its	current	degree	of	belief	about	the
variable	it	tracked	(e.g.,	“I’m	two-thirds	certain	that	this	letter	is	an	R”).	The



recipient	would	process	the	message	in	two	different	ways,	depending	on	its
direction.	If	the	message	went	from	parent	to	child,	the	child	would	update	its
beliefs	using	conditional	probabilities,	 like	 the	ones	we	saw	 in	 the	 teahouse
example.	If	 the	message	went	from	child	 to	parent,	 the	parent	would	update
its	beliefs	by	multiplying	 them	by	a	 likelihood	 ratio,	as	 in	 the	mammogram
example.

Applying	these	two	rules	repeatedly	to	every	node	in	the	network	is	called
belief	propagation.	 In	 retrospect	 there	 is	nothing	arbitrary	or	 invented	about
these	rules;	they	are	in	strict	compliance	with	Bayes’s	rule.	The	real	challenge
was	to	ensure	that	no	matter	in	what	order	these	messages	are	sent	out,	things
will	 settle	 eventually	 into	 a	 comfortable	 equilibrium;	 moreover,	 the	 final
equilibrium	 will	 represent	 the	 correct	 state	 of	 belief	 in	 the	 variables.	 By
“correct”	 I	 mean,	 as	 if	 we	 had	 conducted	 the	 computation	 by	 textbook
methods	rather	than	by	message	passing.

This	 challenge	 would	 occupy	 my	 students	 and	 me,	 as	 well	 as	 my
colleagues,	for	several	years.	But	by	the	end	of	the	1980s,	we	had	resolved	the
difficulties	 to	 the	 point	 that	 Bayesian	 networks	 had	 become	 a	 practical
scheme	 for	machine	 learning.	 The	 next	 decade	 saw	 a	 continual	 increase	 in
real-world	 applications,	 such	 as	 spam	 filtering	 and	 voice	 recognition.
However,	 by	 then	 I	 was	 already	 trying	 to	 climb	 the	 Ladder	 of	 Causation,
while	 entrusting	 the	 probabilistic	 side	 of	 Bayesian	 networks	 to	 the
safekeeping	of	others.

BAYESIAN	NETWORKS:	WHAT	CAUSES	SAY	ABOUT
DATA

Although	Bayes	didn’t	know	it,	his	rule	for	inverse	probability	represents	the
simplest	Bayesian	network.	We	have	seen	this	network	in	several	guises	now:
Tea	 	Scones,	Disease	 	Test,	or,	more	generally,	Hypothesis	 	Evidence.
Unlike	the	causal	diagrams	we	will	deal	with	throughout	the	book,	a	Bayesian
network	 carries	 no	 assumption	 that	 the	 arrow	has	 any	 causal	meaning.	The
arrow	merely	signifies	that	we	know	the	“forward”	probability,	P(scones	|	tea)
or	 P(test	 |	 disease).	 Bayes’s	 rule	 tells	 us	 how	 to	 reverse	 the	 procedure,
specifically	by	multiplying	the	prior	probability	by	a	likelihood	ratio.

Belief	 propagation	 formally	works	 in	 exactly	 the	 same	way	whether	 the
arrows	 are	 noncausal	 or	 causal.	 Nevertheless,	 you	 may	 have	 the	 intuitive
feeling	that	we	have	done	something	more	meaningful	in	the	latter	case	than
in	the	former.	That	is	because	our	brains	are	endowed	with	special	machinery



for	 comprehending	 cause-effect	 relationships	 (such	 as	 cancer	 and
mammograms).	Not	so	for	mere	associations	(such	as	tea	and	scones).

The	next	step	after	a	two-node	network	with	one	link	is,	of	course,	a	three-
node	 network	with	 two	 links,	which	 I	will	 call	 a	 “junction.”	 These	 are	 the
building	blocks	of	all	Bayesian	networks	(and	causal	networks	as	well).	There
are	three	basic	types	of	junctions,	with	the	help	of	which	we	can	characterize
any	pattern	of	arrows	in	the	network.

1.	A	 	B	 	C.	This	junction	is	the	simplest	example	of	a	“chain,”
or	 of	 mediation.	 In	 science,	 one	 often	 thinks	 of	 B	 as	 the
mechanism,	or	“mediator,”	that	transmits	the	effect	of	A	to	C.	A
familiar	example	is	Fire	 	Smoke	 	Alarm.	Although	we	call
them	“fire	 alarms,”	 they	 are	 really	 smoke	 alarms.	The	 fire	 by
itself	does	not	set	off	an	alarm,	so	there	is	no	direct	arrow	from
Fire	 to	Alarm.	Nor	does	 the	fire	set	off	 the	alarm	through	any
other	variable,	such	as	heat.	 It	works	only	by	releasing	smoke
molecules	 in	 the	 air.	 If	 we	 disable	 that	 link	 in	 the	 chain,	 for
instance	by	sucking	all	the	smoke	molecules	away	with	a	fume
hood,	then	there	will	be	no	alarm.

This	observation	leads	to	an	important	conceptual	point
about	chains:	the	mediator	B	“screens	off”	information	about	A
from	C,	and	vice	versa.	(This	was	first	pointed	out	by	Hans
Reichenbach,	a	German-American	philosopher	of	science.)	For
example,	once	we	know	the	value	of	Smoke,	learning	about
Fire	does	not	give	us	any	reason	to	raise	or	lower	our	belief	in
Alarm.	This	stability	of	belief	is	a	rung-one	concept;	hence	it
should	also	be	seen	in	the	data,	when	it	is	available.	Suppose
we	had	a	database	of	all	the	instances	when	there	was	fire,
when	there	was	smoke,	or	when	the	alarm	went	off.	If	we
looked	at	only	the	rows	where	Smoke	=	1,	we	would	expect
Alarm	=	1	every	time,	regardless	of	whether	Fire	=	0	or	Fire	=
1.	This	screening-off	pattern	still	holds	if	the	effect	is	not
deterministic.	For	example,	imagine	a	faulty	alarm	system	that
fails	to	respond	correctly	5	percent	of	the	time.	If	we	look	only
at	the	rows	where	Smoke	=	1,	we	will	find	that	the	probability
of	Alarm	=	1	is	the	same	(95	percent),	regardless	of	whether
Fire	=	0	or	Fire	=	1.

The	process	of	looking	only	at	rows	in	the	table	where



Smoke	=	1	is	called	conditioning	on	a	variable.	Likewise,	we
say	that	Fire	and	Alarm	are	conditionally	independent,	given
the	value	of	Smoke.	This	is	important	to	know	if	you	are
programming	a	machine	to	update	its	beliefs;	conditional
independence	gives	the	machine	a	license	to	focus	on	the
relevant	information	and	disregard	the	rest.	We	all	need	this
kind	of	license	in	our	everyday	thinking,	or	else	we	will	spend
all	our	time	chasing	false	signals.	But	how	do	we	decide	which
information	to	disregard,	when	every	new	piece	of	information
changes	the	boundary	between	the	relevant	and	the	irrelevant?
For	humans,	this	understanding	comes	naturally.	Even	three-
year-old	toddlers	understand	the	screening-off	effect,	though
they	don’t	have	a	name	for	it.	Their	instinct	must	have	come
from	some	mental	representation,	possibly	resembling	a	causal
diagram.	But	machines	do	not	have	this	instinct,	which	is	one
reason	that	we	equip	them	with	causal	diagrams.

2.	A	 	B	 	C.	This	kind	of	 junction	 is	called	a	“fork,”	and	B	 is
often	 called	 a	 common	 cause	 or	 confounder	 of	 A	 and	 C.	 A
confounder	 will	 make	 A	 and	 C	 statistically	 correlated	 even
though	 there	 is	 no	 direct	 causal	 link	 between	 them.	 A	 good
example	(due	to	David	Freedman)	is	Shoe	Size	 	Age	of	Child	
	Reading	Ability.	Children	with	larger	shoes	tend	to	read	at	a

higher	level.	But	the	relationship	is	not	one	of	cause	and	effect.
Giving	 a	 child	 larger	 shoes	 won’t	 make	 him	 read	 better!
Instead,	 both	 variables	 are	 explained	 by	 a	 third,	 which	 is	 the
child’s	age.	Older	children	have	larger	shoes,	and	they	also	are
more	advanced	readers.

We	can	eliminate	this	spurious	correlation,	as	Karl	Pearson
and	George	Udny	Yule	called	it,	by	conditioning	on	the	child’s
age.	For	instance,	if	we	look	only	at	seven-year-olds,	we	expect
to	see	no	relationship	between	shoe	size	and	reading	ability.	As
in	the	case	of	chain	junctions,	A	and	C	are	conditionally
independent,	given	B.

Before	we	go	on	to	our	third	junction,	we	need	to	add	a
word	of	clarification.	The	conditional	independences	I	have	just
mentioned	are	exhibited	whenever	we	look	at	these	junctions	in
isolation.	If	additional	causal	paths	surround	them,	these	paths
need	also	be	taken	into	account.	The	miracle	of	Bayesian



networks	lies	in	the	fact	that	the	three	kinds	of	junctions	we	are
now	describing	in	isolation	are	sufficient	for	reading	off	all	the
independencies	implied	by	a	Bayesian	network,	regardless	of
how	complicated.

3.	A	 	B	 	C.	 This	 is	 the	 most	 fascinating	 junction,	 called	 a
“collider.”	Felix	Elwert	and	Chris	Winship	have	illustrated	this
junction	 using	 three	 features	 of	 Hollywood	 actors:	 Talent	
Celebrity	 	Beauty.	Here	we	are	asserting	 that	both	 talent	and
beauty	 contribute	 to	 an	 actor’s	 success,	 but	 beauty	 and	 talent
are	 completely	 unrelated	 to	 one	 another	 in	 the	 general
population.

We	will	now	see	that	this	collider	pattern	works	in	exactly
the	opposite	way	from	chains	or	forks	when	we	condition	on
the	variable	in	the	middle.	If	A	and	C	are	independent	to	begin
with,	conditioning	on	B	will	make	them	dependent.	For
example,	if	we	look	only	at	famous	actors	(in	other	words,	we
observe	the	variable	Celebrity	=	1),	we	will	see	a	negative
correlation	between	talent	and	beauty:	finding	out	that	a
celebrity	is	unattractive	increases	our	belief	that	he	or	she	is
talented.

This	negative	correlation	is	sometimes	called	collider	bias	or
the	“explain-away”	effect.	For	simplicity,	suppose	that	you
don’t	need	both	talent	and	beauty	to	be	a	celebrity;	one	is
sufficient.	Then	if	Celebrity	A	is	a	particularly	good	actor,	that
“explains	away”	his	success,	and	he	doesn’t	need	to	be	any
more	beautiful	than	the	average	person.	On	the	other	hand,	if
Celebrity	B	is	a	really	bad	actor,	then	the	only	way	to	explain
his	success	is	his	good	looks.	So,	given	the	outcome	Celebrity	=
1,	talent	and	beauty	are	inversely	related—even	though	they	are
not	related	in	the	population	as	a	whole.	Even	in	a	more
realistic	situation,	where	success	is	a	complicated	function	of
beauty	and	talent,	the	explain-away	effect	will	still	be	present.
This	example	is	admittedly	somewhat	apocryphal,	because
beauty	and	talent	are	hard	to	measure	objectively;	nevertheless,
collider	bias	is	quite	real,	and	we	will	see	lots	of	examples	in
this	book.

These	 three	 junctions—chains,	 forks,	 and	 colliders—are	 like	 keyholes
through	 the	 door	 that	 separates	 the	 first	 and	 second	 levels	 of	 the	Ladder	 of



Causation.	 If	 we	 peek	 through	 them,	 we	 can	 see	 the	 secrets	 of	 the	 causal
process	that	generated	the	data	we	observe;	each	stands	for	a	distinct	pattern
of	causal	flow	and	leaves	its	mark	in	the	form	of	conditional	dependences	and
independences	in	the	data.	In	my	public	lectures	I	often	call	them	“gifts	from
the	gods”	because	they	enable	us	to	test	a	causal	model,	discover	new	models,
evaluate	effects	of	interventions,	and	much	more.	Still,	standing	in	isolation,
they	give	us	only	a	glimpse.	We	need	a	key	that	will	completely	open	the	door
and	let	us	step	out	onto	the	second	rung.	That	key,	which	we	will	learn	about
in	 Chapter	 7,	 involves	 all	 three	 junctions,	 and	 is	 called	 d-separation.	 This
concept	tells	us,	for	any	given	pattern	of	paths	in	the	model,	what	patterns	of
dependencies	 we	 should	 expect	 in	 the	 data.	 This	 fundamental	 connection
between	 causes	 and	 probabilities	 constitutes	 the	 main	 contribution	 of
Bayesian	networks	to	the	science	of	causal	inference.

WHERE	IS	MY	BAG?	FROM	AACHEN	TO	ZANZIBAR

So	far	I	have	emphasized	only	one	aspect	of	Bayesian	networks—namely,	the
diagram	and	its	arrows	that	preferably	point	from	cause	to	effect.	Indeed,	the
diagram	 is	 like	 the	 engine	 of	 the	Bayesian	 network.	But	 like	 any	 engine,	 a
Bayesian	 network	 runs	 on	 fuel.	 The	 fuel	 is	 called	 a	 conditional	 probability
table.

Another	way	 to	put	 this	 is	 that	 the	diagram	describes	 the	 relation	of	 the
variables	in	a	qualitative	way,	but	if	you	want	quantitative	answers,	you	also
need	 quantitative	 inputs.	 In	 a	 Bayesian	 network,	 we	 have	 to	 specify	 the
conditional	probability	of	each	node	given	its	“parents.”	(Remember	that	the
parents	of	 a	node	 are	 all	 the	nodes	 that	 feed	 into	 it.)	These	 are	 the	 forward
probabilities,	P(evidence	|	hypotheses).

In	the	case	where	A	is	a	root	node,	with	no	arrows	pointing	into	it,	we	need
only	specify	the	prior	probability	for	each	state	of	A.	In	our	second	network,
Disease	 	 Test,	 Disease	 is	 a	 root	 node.	 Therefore	 we	 specified	 the	 prior
probability	that	a	person	has	the	disease	(1/700	in	our	example)	and	that	she
does	not	have	the	disease	(699/700	in	our	example).

By	depicting	A	as	a	root	node,	we	do	not	really	mean	that	A	has	no	prior
causes.	Hardly	any	variable	 is	entitled	 to	such	a	status.	We	really	mean	 that
any	prior	causes	of	A	can	be	adequately	summarized	in	the	prior	probability
P(A)	 that	 A	 is	 true.	 For	 example,	 in	 the	 Disease	 	 Test	 example,	 family
history	 might	 be	 a	 cause	 of	 Disease.	 But	 as	 long	 as	 we	 are	 sure	 that	 this
family	history	will	 not	 affect	 the	variable	Test	 (once	we	know	 the	 status	of



Disease),	we	need	not	represent	it	as	a	node	in	the	graph.	However,	if	there	is
a	 cause	 of	 Disease	 that	 also	 directly	 affects	 Test,	 then	 that	 cause	 must	 be
represented	explicitly	in	the	diagram.

In	the	case	where	the	node	A	has	a	parent,	A	has	 to	“listen”	to	 its	parent
before	deciding	on	its	own	state.	In	our	mammogram	example,	the	parent	of
Test	was	Disease.	We	can	show	this	“listening”	process	with	a	2	×	2	table	(see
Table	3.2).	For	example,	if	Test	“hears”	that	D	=	0,	then	88	percent	of	the	time
it	will	take	the	value	T	=	0,	and	12	percent	of	the	time	it	will	take	the	value	T
=	1.	Notice	that	the	second	column	of	this	table	contains	the	same	information
we	 saw	 earlier	 from	 the	 Breast	 Cancer	 Surveillance	 Consortium:	 the	 false
positive	rate	(upper	right	corner)	is	12	percent,	and	the	sensitivity	(lower	right
corner)	 is	 73	 percent.	The	 remaining	 two	 entries	 are	 filled	 in	 to	make	 each
row	sum	to	100	percent.

TABLE	3.2.	A	simple	conditional	probability	table.

As	 we	move	 to	 more	 complicated	 networks,	 the	 conditional	 probability
table	 likewise	gets	more	complicated.	For	 example,	 if	we	have	a	node	with
two	parents,	the	conditional	probability	table	has	to	take	into	account	the	four
possible	states	of	both	parents.	Let’s	look	at	a	concrete	example,	suggested	by
Stefan	Conrady	and	Lionel	Jouffe	of	BayesiaLab,	Inc.	It’s	a	scenario	familiar
to	all	travelers:	we	can	call	it	“Where	Is	My	Bag?”

Suppose	you’ve	just	landed	in	Zanzibar	after	making	a	tight	connection	in
Aachen,	and	you’re	waiting	for	your	suitcase	to	appear	on	the	carousel.	Other
passengers	 have	 started	 to	 get	 their	 bags,	 but	 you	 keep	 waiting…	 and
waiting…	 and	 waiting.	 What	 are	 the	 chances	 that	 your	 suitcase	 did	 not
actually	make	the	connection	from	Aachen	to	Zanzibar?	The	answer	depends,
of	course,	on	how	long	you	have	been	waiting.	If	the	bags	have	just	started	to
show	up	on	 the	carousel,	perhaps	you	should	be	patient	and	wait	a	 little	bit
longer.	 If	you’ve	been	waiting	a	 long	 time,	 then	 things	are	 looking	bad.	We
can	quantify	these	anxieties	by	setting	up	a	causal	diagram	(Figure	3.5).



FIGURE	3.5.	Causal	diagram	for	airport/bag	example.

This	 diagram	 reflects	 the	 intuitive	 idea	 that	 there	 are	 two	 causes	 for	 the
appearance	of	any	bag	on	the	carousel.	First,	it	had	to	be	on	the	plane	to	begin
with;	 otherwise,	 it	 will	 certainly	 never	 appear	 on	 the	 carousel.	 Second,	 the
presence	 of	 the	 bag	 on	 the	 carousel	 becomes	more	 likely	 as	 time	 passes…
provided	it	was	actually	on	the	plane.

To	 turn	 the	 causal	diagram	 into	 a	Bayesian	network,	we	have	 to	 specify
the	 conditional	 probability	 tables.	 Let’s	 say	 that	 all	 the	 bags	 at	 Zanzibar
airport	get	unloaded	within	ten	minutes.	(They	are	very	efficient	in	Zanzibar!)
Let’s	also	suppose	that	the	probability	your	bag	made	the	connection,	P(bag
on	plane	=	true)	is	50	percent.	(I	apologize	if	this	offends	anybody	who	works
at	 the	 Aachen	 airport.	 I	 am	 only	 following	 Conrady	 and	 Jouffe’s	 example.
Personally,	 I	 would	 prefer	 to	 assume	 a	 higher	 prior	 probability,	 like	 95
percent.)

The	real	workhorse	of	this	Bayesian	network	is	the	conditional	probability
table	for	“Bag	on	Carousel”	(see	Table	3.3).

This	 table,	 though	 large,	 should	 be	 easy	 to	 understand.	 The	 first	 eleven
rows	say	that	if	your	bag	didn’t	make	it	onto	the	plane	(bag	on	plane	=	false)
then,	 no	 matter	 how	 much	 time	 has	 elapsed,	 it	 won’t	 be	 on	 the	 carousel
(carousel	=	false).	That	 is,	P(carousel	=	false	 |	bag	on	plane	=	 false)	 is	100
percent.	That	is	the	meaning	of	the	100s	in	the	first	eleven	rows.

The	other	eleven	rows	say	that	the	bags	are	unloaded	from	the	plane	at	a
steady	 rate.	 If	 your	 bag	 is	 indeed	 on	 the	 plane,	 there	 is	 a	 10	 percent
probability	it	will	be	unloaded	in	the	first	minute,	a	10	percent	probability	in
the	 second	minute,	 and	 so	 forth.	For	 example,	 after	5	minutes	 there	 is	 a	50
percent	probability	it	has	been	unloaded,	so	we	see	a	50	for	P(carousel	=	true
|	bag	on	plane	 =	 true,	 time	 =	 5).	After	 ten	minutes,	 all	 the	 bags	 have	 been
unloaded,	 so	 P(carousel	 =	 true	 |	 bag	 on	 plane	 =	 true,	 time	 =	 10)	 is	 100
percent.	Thus	we	see	a	100	in	the	last	entry	of	the	table.

The	most	interesting	thing	to	do	with	this	Bayesian	network,	as	with	most
Bayesian	networks,	 is	 to	solve	 the	 inverse-probability	problem:	 if	x	minutes
have	passed	and	I	still	haven’t	gotten	my	bag,	what	 is	 the	probability	 that	 it
was	 on	 the	 plane?	 Bayes’s	 rule	 automates	 this	 computation	 and	 reveals	 an



interesting	pattern.	After	one	minute,	there	is	still	a	47	percent	chance	that	it
was	 on	 the	 plane.	 (Remember	 that	 our	 prior	 assumption	 was	 a	 50	 percent
probability.)	After	five	minutes,	the	probability	drops	to	33	percent.	After	ten
minutes,	of	course,	it	drops	to	zero.	Figure	3.6	shows	a	plot	of	the	probability
over	time,	which	one	might	call	the	“Curve	of	Abandoning	Hope.”	To	me	the
interesting	thing	is	that	it	is	a	curve:	I	think	that	most	people	would	expect	it
to	 be	 a	 straight	 line.	 It	 actually	 sends	 us	 a	 pretty	 optimistic	message:	 don’t
give	 up	 hope	 too	 soon!	 According	 to	 this	 curve,	 you	 should	 abandon	 only
one-third	of	your	hope	in	the	first	half	of	the	allotted	time.

TABLE	3.3.	A	more	complicated	conditional	probability	table.



FIGURE	3.6.	The	probability	of	seeing	your	bag	on	the	carousel	decreases	slowly	at

first,	then	more	rapidly.	(Source:	Graph	by	Maayan	Harel,	data	from	Stefan
Conrady	and	Lionel	Jouffe.)

Besides	a	life	lesson,	we’ve	learned	that	you	don’t	want	to	do	this	by	hand.
Even	with	 this	 tiny	 network	 of	 three	 nodes,	 there	were	 2	 ×	 11	=	 22	 parent
states,	each	contributing	to	the	probability	of	the	child	state.	For	a	computer,
though,	such	computations	are	elementary…	up	to	a	point.	If	they	aren’t	done
in	 an	 organized	 fashion,	 the	 sheer	 number	 of	 computations	 can	 overwhelm
even	the	fastest	supercomputer.	If	a	node	has	ten	parents,	each	of	which	has
two	states,	the	conditional	probability	table	will	have	more	than	1,000	rows.
And	 if	 each	 of	 the	 ten	 parents	 has	 ten	 states,	 the	 table	will	 have	 10	 billion
rows!	 For	 this	 reason	 one	 usually	 has	 to	 winnow	 the	 connections	 in	 the
network	 so	 that	 only	 the	 most	 important	 ones	 remain	 and	 the	 network	 is
“sparse.”	 One	 technical	 advance	 in	 the	 development	 of	 Bayesian	 networks
entailed	 finding	 ways	 to	 leverage	 sparseness	 in	 the	 network	 structure	 to
achieve	reasonable	computation	times.

BAYESIAN	NETWORKS	IN	THE	REAL	WORLD

Bayesian	networks	are	by	now	a	mature	technology,	and	you	can	buy	off-the-
shelf	Bayesian	network	software	from	several	companies.	Bayesian	networks
are	also	embedded	in	many	“smart”	devices.	To	give	you	an	idea	of	how	they
are	 used	 in	 real-world	 applications,	 let’s	 return	 to	 the	 Bonaparte	 DNA-
matching	software	with	which	we	began	this	chapter.



The	Netherlands	Forensic	 Institute	uses	Bonaparte	 every	day,	mostly	 for
missing-persons	 cases,	 criminal	 investigations,	 and	 immigration	 cases.
(Applicants	for	asylum	must	prove	that	they	have	fifteen	family	members	in
the	Netherlands.)	However,	 the	Bayesian	 network	 does	 its	most	 impressive
work	after	 a	massive	disaster,	 such	as	 the	crash	of	Malaysia	Airlines	Flight
17.

Few,	 if	 any,	 of	 the	 victims	 of	 the	 plane	 crash	 could	 be	 identified	 by
comparing	DNA	from	the	wreckage	 to	DNA	in	a	central	database.	The	next
best	thing	to	do	was	to	ask	family	members	to	provide	DNA	swabs	and	look
for	partial	matches	 to	 the	DNA	of	 the	victims.	Conventional	(non-Bayesian)
methods	can	do	this	and	have	been	instrumental	in	solving	a	number	of	cold
cases	 in	 the	Netherlands,	 the	United	 States,	 and	 elsewhere.	 For	 example,	 a
simple	 formula	 called	 the	 “Paternity	 Index”	 or	 the	 “Sibling	 Index”	 can
estimate	 the	 likelihood	 that	 the	 unidentified	DNA	comes	 from	 the	 father	 or
the	brother	of	the	person	whose	DNA	was	tested.

However,	these	indices	are	inherently	limited	because	they	work	for	only
one	specified	relation	and	only	for	close	relations.	The	idea	behind	Bonaparte
is	to	make	it	possible	to	use	DNA	information	from	more	distant	relatives	or
from	multiple	relatives.	Bonaparte	does	this	by	converting	the	pedigree	of	the
family	(see	Figure	3.7)	into	a	Bayesian	network.

In	 Figure	 3.8,	 we	 see	 how	 Bonaparte	 converts	 one	 small	 piece	 of	 a
pedigree	 to	 a	 (causal)	 Bayesian	 network.	 The	 central	 problem	 is	 that	 the
genotype	 of	 an	 individual,	 detected	 in	 a	 DNA	 test,	 contains	 a	 contribution
from	both	the	father	and	the	mother,	but	we	cannot	tell	which	part	is	which.
Thus	 these	 two	contributions	 (called	“alleles”)	have	 to	be	 treated	as	hidden,
unmeasurable	variables	in	the	Bayesian	network.	Part	of	Bonaparte’s	job	is	to
infer	the	probability	of	the	cause	(the	victim’s	gene	for	blue	eyes	came	from
his	father)	from	the	evidence	(e.g.,	he	has	a	blue-eyed	gene	and	a	black-eyed
gene;	his	cousins	on	 the	father’s	side	have	blue	eyes,	but	his	cousins	on	 the
mother’s	side	have	black	eyes).	This	is	an	inverse-probability	problem—just
what	Bayes’s	rule	was	invented	for.



FIGURE	3.7.	Actual	pedigree	of	a	family	with	multiple	victims	in	the	Malaysia

Airlines	crash.	(Source:	Data	provided	by	Willem	Burgers.)



FIGURE	3.8.	From	DNA	tests	to	Bayesian	networks.	In	Bayesian	network,	unshaded

nodes	represent	alleles,	and	shaded	nodes	represent	genotypes.	Data	are	only
available	on	shaded	nodes	because	genotypes	cannot	indicate	which	allele	came
from	the	father	and	which	from	the	mother.	The	Bayesian	network	enables

inference	on	the	unobserved	nodes	and	also	allows	us	to	estimate	the	likelihood
that	a	given	DNA	sample	came	from	the	child.	(Source:	Infographic	by	Maayan

Harel.)

Once	the	Bayesian	network	is	set	up,	the	final	step	is	to	input	the	victim’s
DNA	and	compute	the	likelihood	that	it	fits	into	a	specific	slot	in	the	pedigree.
This	is	done	by	belief	propagation	with	Bayes’s	rule.	The	network	begins	with
a	particular	degree	of	belief	in	each	possible	statement	about	the	nodes	in	the
network,	such	as	“this	person’s	paternal	allele	for	eye	color	is	blue.”	As	new
evidence	 is	 entered	 into	 the	 network—at	 any	 place	 in	 the	 network—the
degrees	of	belief	at	every	node,	up	and	down	 the	network,	will	change	 in	a
cascading	fashion.	Thus,	for	example,	once	we	find	out	that	a	given	sample	is
a	 likely	 match	 for	 one	 person	 in	 the	 pedigree,	 we	 can	 propagate	 that
information	up	and	down	the	network.	In	this	way,	Bonaparte	not	only	learns
from	the	living	family	members’	DNA	but	also	from	the	identifications	it	has
already	made.

This	 example	 vividly	 illustrates	 a	 number	 of	 advantages	 of	 Bayesian
networks.	 Once	 the	 network	 is	 set	 up,	 the	 investigator	 does	 not	 need	 to
intervene	to	tell	it	how	to	evaluate	a	new	piece	of	data.	The	updating	can	be
done	very	quickly.	(Bayesian	networks	are	especially	good	for	programming
on	 a	 distributed	 computer.)	 The	 network	 is	 integrative,	which	means	 that	 it
reacts	as	a	whole	to	any	new	information.	That’s	why	even	DNA	from	an	aunt
or	a	second	cousin	can	help	identify	the	victim.	Bayesian	networks	are	almost
like	a	living	organic	tissue,	which	is	no	accident	because	this	is	precisely	the
picture	 I	 had	 in	mind	when	 I	was	 struggling	 to	make	 them	work.	 I	wanted
Bayesian	networks	 to	operate	 like	 the	neurons	of	a	human	brain;	you	 touch
one	neuron,	and	the	entire	network	responds	by	propagating	the	information
to	every	other	neuron	in	the	system.

The	 transparency	 of	 Bayesian	 networks	 distinguishes	 them	 from	 most
other	 approaches	 to	 machine	 learning,	 which	 tend	 to	 produce	 inscrutable
“black	 boxes.”	 In	 a	 Bayesian	 network	 you	 can	 follow	 every	 step	 and
understand	 how	 and	 why	 each	 piece	 of	 evidence	 changed	 the	 network’s
beliefs.

As	elegant	as	Bonaparte	is,	it’s	worth	noting	one	feature	it	does	not	(yet)
incorporate:	human	intuition.	Once	it	has	finished	the	analysis,	it	provides	the



NFI’s	experts	with	a	ranking	of	the	most	likely	identifications	for	each	DNA
sample	 and	 a	 likelihood	 ratio	 for	 each.	 The	 investigators	 are	 then	 free	 to
combine	the	DNA	evidence	with	other	physical	evidence	recovered	from	the
crash	 site,	 as	 well	 as	 their	 intuition,	 to	make	 their	 final	 determinations.	 At
present,	no	identifications	are	made	by	the	computer	acting	alone.	One	goal	of
causal	 inference	 is	 to	 create	 a	 smoother	 human-machine	 interface,	 which
might	allow	the	investigators’	intuition	to	join	the	belief	propagation	dance.

This	 example	 of	 DNA	 identification	 with	 Bonaparte	 only	 scratches	 the
surface	 of	 the	 applications	 of	 Bayesian	 networks	 to	 genomics.	 However,	 I
would	like	to	move	on	to	a	second	application	that	has	become	ubiquitous	in
today’s	society.	In	fact,	there	is	a	very	good	chance	that	you	have	a	Bayesian
network	in	your	pocket	right	now.	It’s	called	a	cell	phone,	every	one	of	which
uses	error-correction	algorithms	based	on	belief	propagation.

To	begin	 at	 the	 beginning,	when	you	 talk	 into	 a	 phone,	 it	 converts	 your
beautiful	voice	into	a	string	of	ones	and	zeros	(called	bits)	and	transmits	these
using	 a	 radio	 signal.	Unfortunately,	 no	 radio	 signal	 is	 received	with	 perfect
fidelity.	As	the	signal	makes	its	way	to	the	cell	tower	and	then	to	your	friend’s
phone,	some	random	bits	will	flip	from	zero	to	one	or	vice	versa.

To	correct	these	errors,	we	can	add	redundant	information.	An	ultrasimple
scheme	 for	 error	 correction	 is	 simply	 to	 repeat	 each	 information	 bit	 three
times:	encode	a	one	as	“111”	and	a	zero	as	“000.”	The	valid	strings	“111”	and
“000”	 are	 called	 codewords.	 If	 the	 receiver	 hears	 an	 invalid	 string,	 such	 as
“101,”	it	will	search	for	the	most	likely	valid	codeword	to	explain	it.	The	zero
is	more	likely	 to	be	wrong	than	both	ones,	so	 the	decoder	will	 interpret	 this
message	as	“111”	and	therefore	conclude	that	the	information	bit	was	a	one.

Alas,	 this	 code	 is	 highly	 inefficient,	 because	 it	 makes	 all	 our	 messages
three	 times	 longer.	 However,	 communication	 engineers	 have	 worked	 for
seventy	years	on	finding	better	and	better	error-correcting	codes.

The	 problem	 of	 decoding	 is	 identical	 to	 the	 other	 inverse-probability
problems	 we	 have	 discussed,	 because	 we	 once	 again	 want	 to	 infer	 the
probability	 of	 a	 hypothesis	 (the	 message	 sent	 was	 “Hello	 world!”)	 from
evidence	 (the	 message	 received	 was	 “Hxllo	 wovld!”).	 The	 situation	 seems
ripe	for	an	application	of	belief	propagation.

In	 1993,	 an	 engineer	 for	 France	Telecom	named	Claude	Berrou	 stunned
the	 coding	 world	 with	 an	 error-correcting	 code	 that	 achieved	 near-optimal
performance.	(In	other	words,	the	amount	of	redundant	information	required
is	close	to	the	theoretical	minimum.)	His	idea,	called	a	“turbo	code,”	can	be



best	illustrated	by	representing	it	with	a	Bayesian	network.

Figure	3.9(a)	 shows	how	a	 traditional	 code	works.	The	 information	bits,
which	you	speak	into	the	phone,	are	shown	in	the	first	row.	They	are	encoded,
using	any	code	you	like—call	it	code	A—into	codewords	(second	row),	which
are	 then	 received	with	 some	 errors	 (third	 row).	This	 diagram	 is	 a	Bayesian
network,	 and	we	 can	 use	 belief	 propagation	 to	 infer	 from	 the	 received	 bits
what	the	information	bits	were.	However,	this	would	not	in	any	way	improve
on	code	A.

Berrou’s	 brilliant	 idea	was	 to	 encode	 each	message	 twice,	 once	 directly
and	 once	 after	 scrambling	 the	message.	 This	 results	 in	 the	 creation	 of	 two
separate	 codewords	 and	 the	 receipt	 of	 two	 noisy	 messages	 (Figure	 3.9b).
There	 is	 no	known	 formula	 for	 directly	 decoding	 such	 a	 dual	message.	But
Berrou	showed	empirically	that	if	you	apply	the	belief	propagation	formulas
on	 Bayesian	 networks	 repeatedly,	 two	 amazing	 things	 happen.	Most	 of	 the
time	(and	by	this	I	mean	something	like	99.999	percent	of	the	time)	you	get
the	 correct	 information	 bits.	 Not	 only	 that,	 you	 can	 use	 much	 shorter
codewords.	To	put	it	simply,	two	copies	of	code	A	are	way	better	than	one.

FIGURE	3.9.	(a)	Bayesian	network	representation	of	ordinary	coding	process.

Information	bits	are	transformed	into	codewords;	these	are	transmitted	and
received	at	the	destination	with	noise	(errors).	(b)	Bayesian	network	representation

of	turbo	code.	Information	bits	are	scrambled	and	encoded	twice.	Decoding
proceeds	by	belief	propagation	on	this	network.	Each	processor	at	the	bottom	uses
information	from	the	other	processor	to	improve	its	guess	of	the	hidden	codeword,



in	an	iterative	process.

This	capsule	history	is	correct	except	for	one	thing:	Berrou	did	not	know
that	he	was	working	with	Bayesian	networks!	He	had	simply	discovered	the
belief	 propagation	 algorithm	 himself.	 It	 wasn’t	 until	 five	 years	 later	 that
David	MacKay	of	Cambridge	realized	that	it	was	the	same	algorithm	that	he
had	been	 enjoying	 in	 the	 late	1980s	while	playing	with	Bayesian	networks.
This	placed	Berrou’s	algorithm	in	a	familiar	 theoretical	context	and	allowed
information	theorists	to	sharpen	their	understanding	of	its	performance.

In	fact,	another	engineer,	Robert	Gallager	of	the	Massachusetts	Institute	of
Technology,	had	discovered	a	code	 that	used	belief	propagation	 (though	not
called	by	 that	name)	way	back	 in	1960,	so	 long	ago	 that	MacKay	describes
his	code	as	“almost	clairvoyant.”	In	any	event,	it	was	too	far	ahead	of	its	time.
Gallager	 needed	 thousands	 of	 processors	 on	 a	 chip,	 passing	messages	 back
and	forth	about	 their	degree	of	belief	 that	a	particular	 information	bit	was	a
one	 or	 a	 zero.	 In	 1960	 this	 was	 impossible,	 and	 his	 code	 was	 virtually
forgotten	 until	 MacKay	 rediscovered	 it	 in	 1998.	 Today,	 it	 is	 in	 every	 cell
phone.

By	any	measure,	 turbo	codes	have	been	a	staggering	success.	Before	 the
turbo	revolution,	2G	cell	phones	used	“soft	decoding”	(i.e.,	probabilities)	but
not	 belief	 propagation.	 3G	 cell	 phones	 used	 Berrou’s	 turbo	 codes,	 and	 4G
phones	used	Gallager’s	turbo-like	codes.	From	the	consumer’s	viewpoint,	this
means	 that	 your	 cell	 phone	 uses	 less	 energy	 and	 the	 battery	 lasts	 longer,
because	 coding	 and	 decoding	 are	 your	 cell	 phone’s	 most	 energy-intensive
processes.	Also,	better	codes	mean	 that	you	do	not	have	 to	be	as	close	 to	a
cell	tower	to	get	high-quality	transmission.	In	other	words,	Bayesian	networks
enabled	phone	manufacturers	to	deliver	on	their	promise:	more	bars	in	more
places.

FROM	BAYESIAN	NETWORKS	TO	CAUSAL	DIAGRAMS

After	 a	 chapter	devoted	 to	Bayesian	networks,	you	might	wonder	how	 they
relate	to	the	rest	of	this	book	and	in	particular	to	causal	diagrams,	the	kind	we
met	 in	 Chapter	 1.	 Of	 course,	 I	 have	 discussed	 them	 in	 such	 detail	 in	 part
because	 they	 were	 my	 personal	 route	 into	 causality.	 But	 more	 importantly
from	both	a	 theoretical	and	practical	point	of	view,	Bayesian	networks	hold
the	 key	 that	 enables	 causal	 diagrams	 to	 interface	 with	 data.	 All	 the
probabilistic	 properties	 of	 Bayesian	 networks	 (including	 the	 junctions	 we
discussed	 earlier	 in	 this	 chapter)	 and	 the	 belief	 propagation	 algorithms	 that



were	 developed	 for	 them	 remain	 valid	 in	 causal	 diagrams.	They	 are	 in	 fact
indispensable	for	understanding	causal	inference.

The	main	differences	between	Bayesian	networks	and	causal	diagrams	lie
in	how	they	are	constructed	and	 the	uses	 to	which	 they	are	put.	A	Bayesian
network	 is	 literally	 nothing	 more	 than	 a	 compact	 representation	 of	 a	 huge
probability	table.	The	arrows	mean	only	that	the	probabilities	of	child	nodes
are	related	to	the	values	of	parent	nodes	by	a	certain	formula	(the	conditional
probability	 tables)	 and	 that	 this	 relation	 is	 sufficient.	 That	 is,	 knowing
additional	 ancestors	 of	 the	 child	 will	 not	 change	 the	 formula.	 Likewise,	 a
missing	arrow	between	any	two	nodes	means	that	they	are	independent,	once
we	 know	 the	 values	 of	 their	 parents.	 We	 saw	 a	 simple	 version	 of	 this
statement	 earlier,	 when	we	 discussed	 the	 screening-off	 effect	 in	 chains	 and
links.	In	a	chain	A	 	B	 	C,	the	missing	arrow	between	A	and	C	means	that
A	and	C	are	independent	once	we	know	the	values	of	their	parents.	Because	A
has	 no	 parents,	 and	 the	 only	 parent	 of	C	 is	B,	 it	 follows	 that	A	 and	C	 are
independent	once	we	know	the	value	of	B,	which	agrees	with	what	we	said
before.

If,	however,	 the	same	diagram	has	been	constructed	as	a	causal	diagram,
then	both	the	thinking	that	goes	into	the	construction	and	the	interpretation	of
the	final	diagram	change.	In	the	construction	phase,	we	need	to	examine	each
variable,	say	C,	and	ask	ourselves	which	other	variables	it	“listens”	to	before
choosing	its	value.	The	chain	structure	A	 	B	 	C	means	that	B	listens	to	A
only,	C	listens	to	B	only,	and	A	 listens	to	no	one;	that	is,	 it	 is	determined	by
external	forces	that	are	not	part	of	our	model.

This	 listening	metaphor	 encapsulates	 the	 entire	 knowledge	 that	 a	 causal
network	conveys;	the	rest	can	be	derived,	sometimes	by	leveraging	data.	Note
that	if	we	reverse	the	order	of	arrows	in	the	chain,	thus	obtaining	A	 	B	 	C,
the	 causal	 reading	 of	 the	 structure	 will	 change	 drastically,	 but	 the
independence	conditions	will	remain	the	same.	The	missing	arrow	between	A
and	C	will	still	mean	that	A	and	C	are	independent	once	we	know	the	value	of
B,	as	in	the	original	chain.	This	has	two	enormously	important	implications.
First,	it	tells	us	that	causal	assumptions	cannot	be	invented	at	our	whim;	they
are	 subject	 to	 the	 scrutiny	 of	 data	 and	 can	 be	 falsified.	 For	 instance,	 if	 the
observed	data	do	not	show	A	and	C	to	be	independent,	conditional	on	B,	then
we	can	safely	conclude	that	the	chain	model	is	incompatible	with	the	data	and
needs	 to	 be	 discarded	 (or	 repaired).	 Second,	 the	 graphical	 properties	 of	 the
diagram	dictate	which	causal	models	can	be	distinguished	by	data	and	which
will	 forever	 remain	 indistinguishable,	 no	 matter	 how	 large	 the	 data.	 For
example,	we	cannot	distinguish	the	fork	A	 	B	 	C	from	the	chain	A	 	B	



C	 by	 data	 alone,	 because	 the	 two	 diagrams	 imply	 the	 same	 independence
conditions.

Another	convenient	way	of	thinking	about	the	causal	model	is	in	terms	of
hypothetical	experiments.	Each	arrow	can	be	thought	of	as	a	statement	about
the	outcome	of	a	hypothetical	experiment.	An	arrow	from	A	to	C	means	that	if
we	 could	 wiggle	 only	 A,	 then	 we	 would	 expect	 to	 see	 a	 change	 in	 the
probability	 of	 C.	 A	 missing	 arrow	 from	 A	 to	 C	 means	 that	 in	 the	 same
experiment	 we	would	 not	 see	 any	 change	 in	C,	 once	we	 held	 constant	 the
parents	 of	 C	 (in	 other	 words,	 B	 in	 the	 example	 above).	 Note	 that	 the
probabilistic	expression	“once	we	know	the	value	of	B”	has	given	way	to	the
causal	 expression	 “once	 we	 hold	 B	 constant,”	 which	 implies	 that	 we	 are
physically	preventing	B	from	varying	and	disabling	the	arrow	from	A	to	B.

The	causal	thinking	that	goes	into	the	construction	of	the	causal	network
will	 pay	 off,	 of	 course,	 in	 the	 type	 of	 questions	 the	 network	 can	 answer.
Whereas	a	Bayesian	network	can	only	tell	us	how	likely	one	event	is,	given
that	we	observed	another	(rung-one	information),	causal	diagrams	can	answer
interventional	and	counterfactual	questions.	For	example,	the	causal	fork	A	
B	 	C	tells	us	in	no	uncertain	terms	that	wiggling	A	would	have	no	effect	on
C,	no	matter	how	intense	the	wiggle.	On	the	other	hand,	a	Bayesian	network
is	not	equipped	to	handle	a	“wiggle,”	or	to	tell	the	difference	between	seeing
and	doing,	or	indeed	to	distinguish	a	fork	from	a	chain.	In	other	words,	both	a
chain	and	a	fork	would	predict	that	observed	changes	in	A	are	associated	with
changes	in	C,	making	no	prediction	about	the	effect	of	“wiggling”	A.

Now	 we	 come	 to	 the	 second,	 and	 perhaps	 more	 important,	 impact	 of
Bayesian	 networks	 on	 causal	 inference.	 The	 relationships	 that	 were
discovered	between	the	graphical	structure	of	the	diagram	and	the	data	that	it
represents	 now	 permit	 us	 to	 emulate	wiggling	without	 physically	 doing	 so.
Specifically,	applying	a	smart	sequence	of	conditioning	operations	enables	us
to	predict	the	effect	of	actions	or	interventions	without	actually	conducting	an
experiment.	To	 demonstrate,	 consider	 again	 the	 causal	 fork	A	 	B	 	C,	 in
which	we	proclaimed	the	correlation	between	A	and	C	to	be	spurious.	We	can
verify	 this	 by	 an	 experiment	 in	which	we	wiggle	A	 and	 find	 no	 correlation
between	A	and	C.	But	we	can	do	better.	We	can	ask	 the	diagram	to	emulate
the	 experiment	 and	 tell	 us	 if	 any	 conditioning	 operation	 can	 reproduce	 the
correlation	that	would	prevail	in	the	experiment.	The	answer	would	come	out
affirmative:	“The	correlation	between	A	and	C	 that	would	be	measured	after
conditioning	on	B	would	equal	 the	correlation	seen	in	the	experiment.”	This
correlation	can	be	estimated	from	the	data,	and	in	our	case	it	would	be	zero,
faithfully	confirming	our	intuition	that	wiggling	A	would	have	no	effect	on	C.



This	ability	to	emulate	interventions	by	smart	observations	could	not	have
been	 acquired	 had	 the	 statistical	 properties	 of	 Bayesian	 networks	 not	 been
unveiled	between	1980	and	1988.	We	can	now	decide	which	set	of	variables
we	 must	 measure	 in	 order	 to	 predict	 the	 effects	 of	 interventions	 from
observational	 studies.	We	 can	 also	 answer	 “Why?”	 questions.	 For	 example,
someone	may	ask	why	wiggling	A	makes	C	vary.	Is	it	really	the	direct	effect
of	A,	or	is	it	the	effect	of	a	mediating	variable	B?	If	both,	can	we	assess	what
portion	of	the	effect	is	mediated	by	B?

To	 answer	 such	 mediation	 questions,	 we	 have	 to	 envision	 two
simultaneous	 interventions:	 wiggling	 A	 and	 holding	 B	 constant	 (to	 be
distinguished	 from	 conditioning	 on	B).	 If	 we	 can	 perform	 this	 intervention
physically,	we	obtain	the	answer	to	our	question.	But	if	we	are	at	the	mercy	of
observational	studies,	we	need	to	emulate	the	two	actions	with	a	clever	set	of
observations.	 Again,	 the	 graphical	 structure	 of	 the	 diagram	 will	 tell	 us
whether	this	is	possible.

All	 these	 capabilities	 were	 still	 in	 the	 future	 in	 1988,	 when	 I	 started
thinking	about	how	to	marry	causation	to	diagrams.	I	only	knew	that	Bayesian
networks,	 as	 then	 conceived,	 could	 not	 answer	 the	 questions	 I	 was	 asking.
The	realization	that	you	cannot	even	tell	A	 	B	 	C	apart	from	A	 	B	 	C
from	data	alone	was	a	painful	frustration.

I	know	that	you,	 the	reader,	are	eager	now	to	 learn	how	causal	diagrams
enable	us	to	do	calculations	like	the	ones	I	have	just	described.	And	we	will
get	 there—in	Chapters	 7	 through	 9.	 But	 we	 are	 not	 ready	 yet,	 because	 the
moment	we	start	talking	about	observational	versus	experimental	studies,	we
leave	 the	 relatively	 friendly	 waters	 of	 the	 AI	 community	 for	 the	 much
stormier	 waters	 of	 statistics,	 which	 have	 been	 stirred	 up	 by	 its	 unhappy
divorce	from	causality.	In	retrospect,	fighting	for	the	acceptance	of	Bayesian
networks	in	AI	was	a	picnic—no,	a	luxury	cruise!—compared	with	the	fight	I
had	 to	 wage	 for	 causal	 diagrams.	 That	 battle	 is	 still	 ongoing,	 with	 a	 few
remaining	islands	of	resistance.

To	 navigate	 these	 new	 waters,	 we	 will	 have	 to	 understand	 the	 ways	 in
which	 orthodox	 statisticians	 have	 learned	 to	 address	 causation	 and	 the
limitations	of	those	methods.	The	questions	we	raised	above,	concerning	the
effect	 of	 interventions,	 including	 direct	 and	 indirect	 effects,	 are	 not	 part	 of
mainstream	statistics,	primarily	because	the	field’s	founding	fathers	purged	it
of	the	language	of	cause	and	effect.	But	statisticians	nevertheless	consider	it
permissible	 to	 talk	 about	 causes	 and	 effects	 in	 one	 situation:	 a	 randomized
controlled	 trial	 (RCT)	 in	which	a	 treatment	A	 is	 randomly	assigned	 to	some



individuals	 and	 not	 to	 others	 and	 the	 observed	 changes	 in	 B	 are	 then
compared.	 Here,	 both	 orthodox	 statistics	 and	 causal	 inference	 agree	 on	 the
meaning	of	the	sentence	“A	causes	B.”

Before	 we	 turn	 to	 the	 new	 science	 of	 cause	 and	 effect—illuminated	 by
causal	models—we	should	first	try	to	understand	the	strengths	and	limitations
of	the	old,	model-blind	science:	why	randomization	is	needed	to	conclude	that
A	causes	B	and	the	nature	of	the	threat	(called	“confounding”)	that	RCTs	are
intended	to	disarm.	The	next	chapter	takes	up	these	topics.	In	my	experience,
most	 statisticians	 as	well	 as	modern	 data	 analysts	 are	 not	 comfortable	with
any	of	these	questions,	since	they	cannot	articulate	them	using	a	data-centric
vocabulary.	In	fact,	they	often	disagree	on	what	“confounding”	means!

After	 we	 examine	 these	 issues	 in	 the	 light	 of	 causal	 diagrams,	 we	 can
place	 randomized	 controlled	 trials	 into	 their	 proper	 context.	 Either	 we	 can
view	 them	as	a	 special	case	of	our	 inference	engine,	or	we	can	view	causal
inference	as	a	vast	extension	of	RCTs.	Either	viewpoint	 is	fine,	and	perhaps
people	trained	to	see	RCTs	as	the	arbiter	of	causation	will	find	the	latter	more
congenial.



The	biblical	story	of	Daniel,	often	cited	as	the	first	controlled	experiment.	Daniel
(third	from	left?)	realized	that	a	proper	comparison	of	two	diets	could	only	be
made	when	they	were	given	to	two	groups	of	similar	individuals,	chosen	in

advance.	King	Nebuchadnezzar	(rear)	was	impressed	with	the	results.	(Source:
Drawing	by	Dakota	Harr.)



4

CONFOUNDING	AND
DECONFOUNDING:	OR,	SLAYING	THE

LURKING	VARIABLE

If	our	conception	of	causal	effects	had	anything	to	do	with	randomized
experiments,	 the	 latter	 would	 have	 been	 invented	 500	 years	 before
Fisher.

—THE	AUTHOR	(2016)

ASHPENAZ,	 the	 overseer	 of	 King	 Nebuchadnezzar’s	 court,	 had	 a	 major
problem.	 In	597	BC,	 the	 king	 of	Babylon	 had	 sacked	 the	 kingdom	of	 Judah
and	 brought	 back	 thousands	 of	 captives,	 many	 of	 them	 the	 nobility	 of
Jerusalem.	As	was	customary	in	his	kingdom,	Nebuchadnezzar	wanted	some
of	 them	 to	 serve	 in	 his	 court,	 so	 he	 commanded	 Ashpenaz	 to	 seek	 out
“children	 in	 whom	 was	 no	 blemish,	 but	 well	 favoured,	 and	 skilful	 in	 all
wisdom,	and	cunning	in	knowledge,	and	understanding	science.”	These	lucky
children	were	to	be	educated	in	the	language	and	culture	of	Babylon	so	that
they	could	serve	in	the	administration	of	the	empire,	which	stretched	from	the
Persian	Gulf	to	the	Mediterranean	Sea.	As	part	of	their	education,	they	would
get	to	eat	royal	meat	and	drink	royal	wine.

And	 therein	 lay	 the	problem.	One	of	 his	 favorites,	 a	 boy	named	Daniel,
refused	 to	 touch	 the	 food.	 For	 religious	 reasons,	 he	 could	 not	 eat	meat	 not
prepared	 according	 to	 Jewish	 laws,	 and	he	 asked	 that	 he	 and	his	 friends	be
given	a	diet	of	vegetables	instead.	Ashpenaz	would	have	liked	to	comply	with



the	boy’s	wishes,	but	he	was	afraid	that	the	king	would	notice:	“Once	he	sees
your	 frowning	 faces,	different	 from	 the	other	 children	your	 age,	 it	will	 cost
me	my	head.”

Daniel	 tried	 to	 assure	 Ashpenaz	 that	 the	 vegetarian	 diet	 would	 not
diminish	 their	 capacity	 to	 serve	 the	 king.	 As	 befits	 a	 person	 “cunning	 in
knowledge,	 and	understanding	 science,”	he	proposed	 an	 experiment.	Try	us
for	ten	days,	he	said.	Take	four	of	us	and	feed	us	only	vegetables;	take	another
group	 of	 children	 and	 feed	 them	 the	 king’s	meat	 and	wine.	After	 ten	 days,
compare	 the	 two	 groups.	 Said	 Daniel,	 “And	 as	 thou	 seest,	 deal	 with	 thy
servants.”

Even	if	you	haven’t	read	the	story,	you	can	probably	guess	what	happened
next.	Daniel	and	his	three	companions	prospered	on	the	vegetarian	diet.	The
king	was	so	impressed	with	their	wisdom	and	learning—not	to	mention	their
healthy	 appearance—that	 he	 gave	 them	 a	 favored	 place	 in	 his	 court,	where
“he	 found	 them	 ten	 times	 better	 than	 all	 the	magicians	 and	 astrologers	 that
were	 in	 all	 his	 realm.”	 Later	 Daniel	 became	 an	 interpreter	 of	 the	 king’s
dreams	and	survived	a	memorable	encounter	in	a	lion’s	den.

Believe	 it	or	not,	 the	biblical	 story	of	Daniel	 encapsulates	 in	a	profound
way	 the	 conduct	 of	 experimental	 science	 today.	 Ashpenaz	 asks	 a	 question
about	 causation:	 Will	 a	 vegetarian	 diet	 cause	 my	 servants	 to	 lose	 weight?
Daniel	proposes	a	methodology	to	deal	with	any	such	questions:	Set	up	two
groups	 of	 people,	 identical	 in	 all	 relevant	 ways.	 Give	 one	 group	 a	 new
treatment	(a	diet,	a	drug,	etc.),	while	the	other	group	(called	the	control	group)
either	gets	the	old	treatment	or	no	special	treatment	at	all.	If,	after	a	suitable
amount	of	time,	you	see	a	measurable	difference	between	the	two	supposedly
identical	groups	of	people,	 then	 the	new	 treatment	must	be	 the	cause	of	 the
difference.

Nowadays	we	call	this	a	controlled	experiment.	The	principle	is	simple.	To
understand	 the	 causal	 effect	 of	 the	 diet,	 we	 would	 like	 to	 compare	 what
happens	 to	 Daniel	 on	 one	 diet	 with	 what	 would	 have	 happened	 if	 he	 had
stayed	 on	 the	 other.	 But	 we	 can’t	 go	 back	 in	 time	 and	 rewrite	 history,	 so
instead	we	do	the	next	best	thing:	we	compare	a	group	of	people	who	get	the
treatment	 with	 a	 group	 of	 similar	 people	 who	 don’t.	 It’s	 obvious,	 but
nevertheless	 crucial,	 that	 the	 groups	 be	 comparable	 and	 representative	 of
some	 population.	 If	 these	 conditions	 are	 met,	 then	 the	 results	 should	 be
transferable	 to	 the	 population	 at	 large.	 To	 Daniel’s	 credit,	 he	 seems	 to
understand	this.	He	isn’t	 just	asking	for	vegetables	on	his	own	behalf:	 if	 the
trial	shows	the	vegetarian	diet	 is	better,	 then	all	 the	Israelite	servants	should



be	allowed	that	diet	in	the	future.	That,	at	least,	is	how	I	interpret	the	phrase,
“As	thou	seest,	deal	with	thy	servants.”

Daniel	 also	 understood	 that	 it	was	 important	 to	 compare	 groups.	 In	 this
respect	 he	 was	 already	 more	 sophisticated	 than	 many	 people	 today,	 who
choose	a	fad	diet	(for	example)	just	because	a	friend	went	on	that	diet	and	lost
weight.	 If	you	choose	a	diet	based	only	on	one	 friend’s	experience,	you	are
essentially	 saying	 that	 you	 believe	 you	 are	 similar	 to	 your	 friend	 in	 all
relevant	details:	age,	heredity,	home	environment,	previous	diet,	and	so	forth.
That	is	a	lot	to	assume.

Another	 key	point	 of	Daniel’s	 experiment	 is	 that	 it	was	 prospective:	 the
groups	 were	 chosen	 in	 advance.	 By	 contrast,	 suppose	 that	 you	 see	 twenty
people	 in	an	 infomercial	who	all	 say	 they	 lost	weight	on	a	diet.	That	seems
like	a	pretty	large	sample	size,	so	some	viewers	might	consider	it	convincing
evidence.	But	that	would	amount	to	basing	their	decision	on	the	experience	of
people	who	already	had	a	good	response.	For	all	you	know,	for	every	person
who	 lost	 weight,	 ten	 others	 just	 like	 him	 or	 her	 tried	 the	 diet	 and	 had	 no
success.	But	of	course,	they	weren’t	chosen	to	appear	on	the	infomercial.

Daniel’s	experiment	was	strikingly	modern	in	all	these	ways.	Prospective
controlled	trials	are	still	a	hallmark	of	sound	science.	However,	Daniel	didn’t
think	of	one	thing:	confounding	bias.	Suppose	that	Daniel	and	his	friends	are
healthier	 than	 the	 control	 group	 to	 start	 with.	 In	 that	 case,	 their	 robust
appearance	 after	 ten	 days	 on	 the	 diet	may	have	 nothing	 to	 do	with	 the	 diet
itself;	 it	may	 reflect	 their	 overall	 health.	Maybe	 they	would	have	prospered
even	more	if	they	had	eaten	the	king’s	meat!

Confounding	bias	occurs	when	a	variable	influences	both	who	is	selected
for	 the	 treatment	 and	 the	 outcome	 of	 the	 experiment.	 Sometimes	 the
confounders	 are	known;	other	 times	 they	 are	merely	 suspected	 and	act	 as	 a
“lurking	third	variable.”	In	a	causal	diagram,	confounders	are	extremely	easy
to	 recognize:	 in	 Figure	 4.1,	 the	 variable	 Z	 at	 the	 center	 of	 the	 fork	 is	 a
confounder	of	X	and	Y.	(We	will	see	a	more	universal	definition	later,	but	this
triangle	is	the	most	recognizable	and	common	situation.)

FIGURE	4.1.	The	most	basic	version	of	confounding:	Z	is	a	confounder	of	the

proposed	causal	relationship	between	X	and	Y.



The	term	“confounding”	originally	meant	“mixing”	in	English,	and	we	can
understand	 from	 the	 diagram	 why	 this	 name	 was	 chosen.	 The	 true	 causal
effect	 X	 	 Y	 is	 “mixed”	 with	 the	 spurious	 correlation	 between	 X	 and	 Y
induced	by	the	fork	X	 	Z	 	Y.	For	example,	if	we	are	testing	a	drug	and	give
it	to	patients	who	are	younger	on	average	than	the	people	in	the	control	group,
then	 age	 becomes	 a	 confounder—a	 lurking	 third	 variable.	 If	we	 don’t	 have
any	data	on	the	ages,	we	will	not	be	able	to	disentangle	the	true	effect	from
the	spurious	effect.

However,	 the	 converse	 is	 also	 true.	 If	we	 do	 have	measurements	 of	 the
third	variable,	then	it	is	very	easy	to	deconfound	the	true	and	spurious	effects.
For	instance,	if	the	confounding	variable	Z	is	age,	we	compare	the	treatment
and	control	groups	in	every	age	group	separately.	We	can	then	take	an	average
of	 the	 effects,	 weighting	 each	 age	 group	 according	 to	 its	 percentage	 in	 the
target	population.	This	method	of	compensation	is	familiar	to	all	statisticians;
it	is	called	“adjusting	for	Z”	or	“controlling	for	Z.”

Oddly,	 statisticians	both	over-	 and	underrate	 the	 importance	of	 adjusting
for	possible	confounders.	They	overrate	it	in	the	sense	that	they	often	control
for	many	more	variables	 than	 they	need	 to	 and	 even	 for	 variables	 that	 they
should	not	control	for.	I	recently	came	across	a	quote	from	a	political	blogger
named	Ezra	Klein	who	expresses	this	phenomenon	of	“overcontrolling”	very
clearly:	“You	see	it	all	the	time	in	studies.	‘We	controlled	for…’	And	then	the
list	 starts.	The	 longer	 the	better.	 Income.	Age.	Race.	Religion.	Height.	Hair
color.	Sexual	preference.	Crossfit	attendance.	Love	of	parents.	Coke	or	Pepsi.
The	more	things	you	can	control	for,	the	stronger	your	study	is—or,	at	least,
the	 stronger	 your	 study	 seems.	 Controls	 give	 the	 feeling	 of	 specificity,	 of
precision.…	But	 sometimes,	 you	 can	 control	 for	 too	much.	 Sometimes	 you
end	up	controlling	for	the	thing	you’re	trying	to	measure.”	Klein	raises	a	valid
concern.	 Statisticians	 have	 been	 immensely	 confused	 about	 what	 variables
should	 and	 should	not	 be	 controlled	 for,	 so	 the	default	 practice	has	been	 to
control	 for	 everything	 one	 can	 measure.	 The	 vast	 majority	 of	 studies
conducted	 in	 this	 day	 and	 age	 subscribe	 to	 this	 practice.	 It	 is	 a	 convenient,
simple	procedure	to	follow,	but	it	 is	both	wasteful	and	ridden	with	errors.	A
key	 achievement	 of	 the	Causal	Revolution	has	 been	 to	 bring	 an	 end	 to	 this
confusion.

At	 the	 same	 time,	 statisticians	 greatly	 underrate	 controlling	 in	 the	 sense
that	 they	 are	 loath	 to	 talk	 about	 causality	 at	 all,	 even	 if	 the	 controlling	 has
been	done	correctly.	This	too	stands	contrary	to	the	message	of	this	chapter:	if
you	 have	 identified	 a	 sufficient	 set	 of	 deconfounders	 in	 your	 diagram,
gathered	data	on	them,	and	properly	adjusted	for	them,	then	you	have	every



right	 to	 say	 that	 you	 have	 computed	 the	 causal	 effect	X	 	Y	 (provided,	 of
course,	that	you	can	defend	your	causal	diagram	on	scientific	grounds).

The	 textbook	 approach	 of	 statisticians	 to	 confounding	 is	 quite	 different
and	 rests	 on	 an	 idea	 most	 effectively	 advocated	 by	 R.	 A.	 Fisher:	 the
randomized	 controlled	 trial	 (RCT).	 Fisher	 was	 exactly	 right,	 but	 not	 for
exactly	 the	 right	 reasons.	 The	 randomized	 controlled	 trial	 is	 indeed	 a
wonderful	 invention—but	 until	 recently	 the	 generations	 of	 statisticians	who
followed	Fisher	could	not	prove	that	what	they	got	from	the	RCT	was	indeed
what	they	sought	to	obtain.	They	did	not	have	a	language	to	write	down	what
they	were	looking	for—namely,	the	causal	effect	of	X	on	Y.	One	of	my	goals
in	 this	 chapter	 is	 to	 explain,	 from	 the	 point	 of	 view	 of	 causal	 diagrams,
precisely	 why	 RCTs	 allow	 us	 to	 estimate	 the	 causal	 effect	X	 	Y	 without
falling	prey	 to	confounder	bias.	Once	we	have	understood	why	RCTs	work,
there	is	no	need	to	put	them	on	a	pedestal	and	treat	them	as	the	gold	standard
of	 causal	 analysis,	 which	 all	 other	 methods	 should	 emulate.	 Quite	 the
opposite:	 we	 will	 see	 that	 the	 so-called	 gold	 standard	 in	 fact	 derives	 its
legitimacy	from	more	basic	principles.

This	chapter	will	also	show	that	causal	diagrams	make	possible	a	shift	of
emphasis	from	confounders	to	deconfounders.	The	former	cause	the	problem;
the	latter	cure	it.	The	two	sets	may	overlap,	but	they	don’t	have	to.	If	we	have
data	on	a	sufficient	set	of	deconfounders,	it	does	not	matter	if	we	ignore	some
or	even	all	of	the	confounders.

This	 shift	 of	 emphasis	 is	 a	 main	 way	 in	 which	 the	 Causal	 Revolution
allows	us	 to	go	beyond	Fisherian	 experiments	 and	 infer	 causal	 effects	 from
nonexperimental	studies.	It	enables	us	to	determine	which	variables	should	be
controlled	 for	 to	 serve	 as	 deconfounders.	 This	 question	 has	 bedeviled	 both
theoretical	and	practical	statisticians;	it	has	been	an	Achilles’	heel	of	the	field
for	 decades.	 That	 is	 because	 it	 has	 nothing	 to	 do	 with	 data	 or	 statistics.
Confounding	 is	 a	 causal	 concept—it	 belongs	 on	 rung	 two	 of	 the	Ladder	 of
Causation.

Graphical	methods,	beginning	in	the	1990s,	have	totally	deconfounded	the
confounding	 problem.	 In	 particular,	we	will	 soon	meet	 a	method	 called	 the
back-door	 criterion,	 which	 unambiguously	 identifies	 which	 variables	 in	 a
causal	diagram	are	deconfounders.	If	the	researcher	can	gather	data	on	those
variables,	 she	 can	 adjust	 for	 them	 and	 thereby	 make	 predictions	 about	 the
result	of	an	intervention	even	without	performing	it.

In	 fact,	 the	 Causal	 Revolution	 has	 gone	 even	 farther	 than	 this.	 In	 some
cases	we	can	control	 for	 confounding	even	when	we	do	not	have	data	on	a



sufficient	set	of	deconfounders.	In	these	cases	we	can	use	different	adjustment
formulas—not	 the	conventional	one,	which	 is	 only	 appropriate	 for	 use	with
the	 back-door	 criterion—and	 still	 eradicate	 all	 confounding.	 We	 will	 save
these	exciting	developments	for	Chapter	7.

Although	 confounding	 has	 a	 long	 history	 in	 all	 areas	 of	 science,	 the
recognition	that	 the	problem	requires	causal,	not	statistical,	solutions	is	very
recent.	Even	 as	 recently	 as	 2001,	 reviewers	 rebuked	 a	 paper	 of	mine	while
insisting,	“Confounding	is	solidly	founded	in	standard	statistics.”	Fortunately,
the	 number	 of	 such	 reviewers	 has	 shrunk	 dramatically	 in	 the	 past	 decade.
There	is	now	an	almost	universal	consensus,	at	least	among	epidemiologists,
philosophers,	 and	 social	 scientists,	 that	 (1)	 confounding	 needs	 and	 has	 a
causal	 solution,	 and	 (2)	 causal	 diagrams	provide	 a	 complete	 and	 systematic
way	 of	 finding	 that	 solution.	 The	 age	 of	 confusion	 over	 confounding	 has
come	to	an	end!

THE	CHILLING	FEAR	OF	CONFOUNDING

In	 1998,	 a	 study	 in	 the	 New	 England	 Journal	 of	 Medicine	 revealed	 an
association	 between	 regular	walking	 and	 reduced	 death	 rates	 among	 retired
men.	The	researchers	used	data	from	the	Honolulu	Heart	Program,	which	has
followed	the	health	of	8,000	men	of	Japanese	ancestry	since	1965.

The	researchers,	led	by	Robert	Abbott,	a	biostatistician	at	the	University	of
Virginia,	wanted	to	know	whether	the	men	who	exercised	more	lived	longer.
They	chose	a	sample	of	707	men	from	the	larger	group	of	8,000,	all	of	whom
were	physically	healthy	enough	to	walk.	Abbott’s	 team	found	that	 the	death
rate	over	a	twelve-year	period	was	two	times	higher	among	men	who	walked
less	than	a	mile	a	day	(I’ll	call	them	“casual	walkers”)	than	among	men	who
walked	 more	 than	 two	 miles	 a	 day	 (“intense	 walkers”).	 To	 be	 precise,	 43
percent	of	the	casual	walkers	had	died,	while	only	21.5	percent	of	the	intense
walkers	had	died.

However,	 because	 the	 experimenters	 did	 not	 prescribe	 who	 would	 be	 a
casual	 walker	 and	 who	 would	 be	 an	 intense	 walker,	 we	 have	 to	 take	 into
consideration	 the	 possibility	 of	 confounding	 bias.	 An	 obvious	 confounder
might	be	age:	younger	men	might	be	more	willing	to	do	a	vigorous	workout
and	also	would	be	less	likely	to	die.	So	we	would	have	a	causal	diagram	like
that	in	Figure	4.2.



FIGURE	4.2.	Causal	diagram	for	walking	example.

The	 classic	 forking	 pattern	 at	 the	 “Age”	 node	 tells	 us	 that	 age	 is	 a
confounder	of	walking	and	mortality.	I’m	sure	you	can	think	of	other	possible
confounders.	 Perhaps	 the	 casual	 walkers	 were	 slacking	 off	 for	 a	 reason;
maybe	 they	 couldn’t	 walk	 as	 much.	 Thus,	 physical	 condition	 could	 be	 a
confounder.	We	could	go	on	and	on	like	this.	What	if	the	light	walkers	were
alcohol	drinkers?	What	if	they	ate	more?

The	 good	 news	 is,	 the	 researchers	 thought	 about	 all	 these	 factors.	 The
study	has	accounted	and	adjusted	for	every	reasonable	factor—age,	physical
condition,	 alcohol	 consumption,	 diet,	 and	 several	 others.	 For	 example,	 it’s
true	that	the	intense	walkers	tended	to	be	slightly	younger.	So	the	researchers
adjusted	 the	death	rate	 for	age	and	found	 that	 the	difference	between	casual
and	intense	walkers	was	still	very	large.	(The	age-adjusted	death	rate	for	the
casual	 walkers	 was	 41	 percent,	 compared	 to	 24	 percent	 for	 the	 intense
walkers.)

Even	so,	the	researchers	were	very	circumspect	in	their	conclusions.	At	the
end	 of	 the	 article,	 they	 wrote,	 “Of	 course,	 the	 effects	 on	 longevity	 of
intentional	 efforts	 to	 increase	 the	 distance	 walked	 per	 day	 by	 physically
capable	older	men	cannot	be	addressed	in	our	study.”	To	use	the	language	of
Chapter	1,	 they	 decline	 to	 say	 anything	 about	 your	 probability	 of	 surviving
twelve	years	given	that	you	do(exercise).

In	 fairness	 to	Abbott	 and	 the	 rest	 of	 his	 team,	 they	may	 have	 had	 good
reasons	for	caution.	This	was	a	first	study,	and	the	sample	was	relatively	small
and	homogeneous.	Nevertheless,	this	caution	reflects	a	more	general	attitude,
transcending	issues	of	homogeneity	and	sample	size.	Researchers	have	been
taught	to	believe	that	an	observational	study	(one	where	subjects	choose	their
own	treatment)	can	never	illuminate	a	causal	claim.	I	assert	that	this	caution	is
overexaggerated.	 Why	 else	 would	 one	 bother	 adjusting	 for	 all	 these
confounders,	 if	 not	 to	 get	 rid	 of	 the	 spurious	 part	 of	 the	 association	 and
thereby	get	a	better	view	of	the	causal	part?

Instead	of	saying	“Of	course	we	can’t,”	as	 they	did,	we	should	proclaim
that	of	course	we	can	say	something	about	an	intentional	intervention.	If	we
believe	that	Abbott’s	team	identified	all	the	important	confounders,	we	must
also	believe	that	intentional	walking	tends	to	prolong	life	(at	least	in	Japanese



males).

This	 provisional	 conclusion,	 predicated	 on	 the	 assumption	 that	 no	 other
confounders	 could	 play	 a	 major	 role	 in	 the	 relationships	 found,	 is	 an
extremely	valuable	piece	of	 information.	 It	 tells	a	potential	walker	precisely
what	kind	of	uncertainty	remains	in	taking	the	claim	at	face	value.	It	tells	him
that	the	remaining	uncertainty	is	not	higher	than	the	possibility	that	additional
confounders	 exist	 that	were	 not	 taken	 into	 account.	 It	 is	 also	 valuable	 as	 a
guide	 to	 future	 studies,	 which	 should	 focus	 on	 those	 other	 factors	 (if	 they
exist),	not	the	ones	neutralized	in	the	current	study.	In	short,	knowing	the	set
of	assumptions	that	stand	behind	a	given	conclusion	is	not	less	valuable	than
attempting	to	circumvent	those	assumptions	with	an	RCT,	which,	as	we	shall
see,	has	complications	of	its	own.

THE	SKILLFUL	INTERROGATION	OF	NATURE:	WHY
RCTS	WORK

As	I	have	mentioned	already,	the	one	circumstance	under	which	scientists	will
abandon	 some	 of	 their	 reticence	 to	 talk	 about	 causality	 is	 when	 they	 have
conducted	a	randomized	controlled	trial.	You	can	read	it	on	Wikipedia	or	in	a
thousand	other	places:	“The	RCT	is	often	considered	 the	gold	standard	of	a
clinical	trial.”	We	have	one	person	to	thank	for	this,	R.	A.	Fisher,	so	it	is	very
interesting	to	read	what	a	person	very	close	 to	him	wrote	about	his	 reasons.
The	passage	is	lengthy,	but	worth	quoting	in	full:

The	whole	art	and	practice	of	scientific	experimentation	 is	comprised
in	 the	 skillful	 interrogation	 of	 Nature.	 Observation	 has	 provided	 the
scientist	 with	 a	 picture	 of	 Nature	 in	 some	 aspect,	 which	 has	 all	 the
imperfections	 of	 a	 voluntary	 statement.	 He	 wishes	 to	 check	 his
interpretation	 of	 this	 statement	 by	 asking	 specific	 questions	 aimed	 at
establishing	 causal	 relationships.	 His	 questions,	 in	 the	 form	 of
experimental	operations,	are	necessarily	particular,	and	he	must	rely	on
the	 consistency	 of	 Nature	 in	 making	 general	 deductions	 from	 her
response	 in	 a	 particular	 instance	 or	 in	 predicting	 the	 outcome	 to	 be
anticipated	 from	 similar	 operations	 on	 other	 occasions.	His	 aim	 is	 to
draw	 valid	 conclusions	 of	 determinate	 precision	 and	 generality	 from
the	evidence	he	elicits.

Far	 from	 behaving	 consistently,	 however,	 Nature	 appears
vacillating,	 coy,	 and	 ambiguous	 in	 her	 answers.	 She	 responds	 to	 the
form	of	the	question	as	it	 is	set	out	in	the	field	and	not	necessarily	to



the	question	in	the	experimenter’s	mind;	she	does	not	interpret	for	him;
she	gives	no	gratuitous	information;	and	she	is	a	stickler	for	accuracy.
In	consequence,	the	experimenter	who	wants	to	compare	two	manurial
treatments	wastes	his	labor	if,	dividing	his	field	into	two	equal	parts,	he
dresses	each	half	with	one	of	his	manures,	grows	a	crop,	and	compares
the	yields	from	the	two	halves.	The	form	of	his	question	was:	what	is
the	difference	between	the	yield	of	plot	A	under	the	first	treatment	and
that	 of	 plot	 B	 under	 the	 second?	 He	 has	 not	 asked	 whether	 plot	 A
would	yield	the	same	as	plot	B	under	uniform	treatment,	and	he	cannot
distinguish	plot	effects	from	treatment	effects,	for	Nature	has	recorded,
as	 requested,	 not	 only	 the	 contribution	of	 the	manurial	 differences	 to
the	plot	yields	but	also	the	contributions	of	differences	in	soil	fertility,
texture,	drainage,	aspect,	microflora,	and	innumerable	other	variables.

The	 author	 of	 this	 passage	 is	 Joan	 Fisher	 Box,	 the	 daughter	 of	 Ronald
Aylmer	 Fisher,	 and	 it	 is	 taken	 from	 her	 biography	 of	 her	 illustrious	 father.
Though	 not	 a	 statistician	 herself,	 she	 has	 clearly	 absorbed	 very	 deeply	 the
central	challenge	statisticians	 face.	She	states	 in	 no	uncertain	 terms	 that	 the
questions	they	ask	are	“aimed	at	establishing	causal	relationships.”	And	what
gets	in	their	way	is	confounding,	although	she	does	not	use	that	word.	They
want	to	know	the	effect	of	a	fertilizer	(or	“manurial	treatment,”	as	fertilizers
were	 called	 in	 that	 era)—that	 is,	 the	 expected	 yield	 under	 one	 fertilizer
compared	 with	 the	 yield	 under	 an	 alternative.	 Nature,	 however,	 tells	 them
about	the	effect	of	the	fertilizer	mixed	(remember,	this	is	the	original	meaning
of	“confounded”)	with	a	variety	of	other	causes.

I	like	the	image	that	Fisher	Box	provides	in	the	above	passage:	Nature	is
like	a	genie	that	answers	exactly	the	question	we	pose,	not	necessarily	the	one
we	intend	to	ask.	But	we	have	to	believe,	as	Fisher	Box	clearly	does,	that	the
answer	to	the	question	we	wish	to	ask	does	exist	in	nature.	Our	experiments
are	a	sloppy	means	of	uncovering	the	answer,	but	they	do	not	by	any	means
define	the	answer.	If	we	follow	her	analogy	exactly,	then	do(X	=	x)	must	come
first,	 because	 it	 is	 a	 property	 of	 nature	 that	 represents	 the	 answer	we	 seek:
What	 is	 the	 effect	 of	 using	 the	 first	 fertilizer	 on	 the	 whole	 field?
Randomization	comes	second,	because	it	is	only	a	man-made	means	to	elicit
the	 answer	 to	 that	 question.	 One	 might	 compare	 it	 to	 the	 gauge	 on	 a
thermometer,	 which	 is	 a	 means	 to	 elicit	 the	 temperature	 but	 is	 not	 the
temperature	itself.

In	his	early	years	at	Rothamsted	Experimental	Station,	Fisher	usually	took
a	very	elaborate,	systematic	approach	to	disentangling	the	effects	of	fertilizer
from	other	variables.	He	would	divide	his	 fields	 into	a	grid	of	 subplots	and



plan	carefully	so	 that	each	fertilizer	was	 tried	with	each	combination	of	soil
type	 and	 plant	 (see	 Figure	 4.3).	 He	 did	 this	 to	 ensure	 the	 comparability	 of
each	 sample;	 in	 reality,	 he	 could	 never	 anticipate	 all	 the	 confounders	 that
might	 determine	 the	 fertility	 of	 a	 given	 plot.	 A	 clever	 enough	 genie	 could
defeat	any	structured	layout	of	the	field.

Around	1923	or	1924,	Fisher	began	to	realize	 that	 the	only	experimental
design	that	the	genie	could	not	defeat	was	a	random	one.	Imagine	performing
the	 same	 experiment	 one	 hundred	 times	 on	 a	 field	 with	 an	 unknown
distribution	of	fertility.	Each	time	you	assign	fertilizers	to	subplots	randomly.
Sometimes	you	may	be	very	unlucky	and	use	Fertilizer	1	in	all	the	least	fertile
subplots.	 Other	 times	 you	 may	 get	 lucky	 and	 apply	 it	 to	 the	 most	 fertile
subplots.	But	by	generating	a	new	random	assignment	each	time	you	perform
the	experiment,	you	can	guarantee	that	the	great	majority	of	the	time	you	will
be	neither	lucky	nor	unlucky.	In	those	cases,	Fertilizer	1	will	be	applied	to	a
selection	 of	 subplots	 that	 is	 representative	 of	 the	 field	 as	 a	 whole.	 This	 is
exactly	 what	 you	 want	 for	 a	 controlled	 trial.	 Because	 the	 distribution	 of
fertility	in	the	field	is	fixed	throughout	your	series	of	experiments—the	genie
can’t	 change	 it—he	 is	 tricked	 into	 answering	 (most	 of	 the	 time)	 the	 causal
question	you	wanted	to	ask.

FIGURE	4.3.	R.	A.	Fisher	with	one	of	his	many	innovations:	a	Latin	square

experimental	design,	intended	to	ensure	that	one	plot	of	each	plant	type	appears	in
each	row	(fertilizer	type)	and	column	(soil	type).	Such	designs	are	still	used	in
practice,	but	Fisher	would	later	argue	convincingly	that	a	randomized	design	is

even	more	effective.	(Source:	Drawing	by	Dakota	Harr.)



From	 our	 perspective,	 in	 an	 era	 when	 randomized	 trials	 are	 the	 gold
standard,	 all	 of	 this	 may	 appear	 obvious.	 But	 at	 the	 time,	 the	 idea	 of	 a
randomly	 designed	 experiment	 horrified	 Fisher’s	 statistical	 colleagues.
Fisher’s	 literally	 drawing	 from	 a	 deck	 of	 cards	 to	 assign	 subplots	 to	 each
fertilizer	 may	 have	 contributed	 to	 their	 dismay.	 Science	 subjected	 to	 the
whims	of	chance?

But	Fisher	realized	that	an	uncertain	answer	to	the	right	question	is	much
better	than	a	highly	certain	answer	to	the	wrong	question.	If	you	ask	the	genie
the	wrong	question,	you	will	never	 find	out	what	you	want	 to	know.	 If	you
ask	the	right	question,	getting	an	answer	that	 is	occasionally	wrong	is	much
less	 of	 a	 problem.	You	 can	 still	 estimate	 the	 amount	 of	 uncertainty	 in	 your
answer,	 because	 the	 uncertainty	 comes	 from	 the	 randomization	 procedure
(which	 is	 known)	 rather	 than	 the	 characteristics	 of	 the	 soil	 (which	 are
unknown).

Thus,	 randomization	 actually	 brings	 two	 benefits.	 First,	 it	 eliminates
confounder	 bias	 (it	 asks	 Nature	 the	 right	 question).	 Second,	 it	 enables	 the
researcher	 to	 quantify	 his	 uncertainty.	 However,	 according	 to	 historian
Stephen	 Stigler,	 the	 second	 benefit	 was	 really	 Fisher’s	 main	 reason	 for
advocating	 randomization.	 He	 was	 the	 world’s	 master	 of	 quantifying
uncertainty,	having	developed	many	new	mathematical	procedures	for	doing
so.	By	comparison,	his	understanding	of	deconfounding	was	purely	intuitive,
for	he	lacked	a	mathematical	notation	for	articulating	what	he	sought.

Now,	ninety	years	later,	we	can	use	the	do-operator	to	fill	in	what	Fisher
wanted	 to	 but	 couldn’t	 ask.	 Let’s	 see,	 from	 a	 causal	 point	 of	 view,	 how
randomization	enables	us	to	ask	the	genie	the	right	question.

Let’s	 start,	 as	 usual,	 by	 drawing	 a	 causal	 diagram.	 Model	 1,	 shown	 in
Figure	4.4,	describes	how	the	yield	of	each	plot	 is	determined	under	normal
conditions,	where	the	farmer	decides	by	whim	or	bias	which	fertilizer	is	best
for	each	plot.	The	query	he	wants	to	pose	to	the	genie	Nature	is	“What	is	the
yield	 under	 a	 uniform	 application	 of	Fertilizer	 1	 (versus	Fertilizer	 2)	 to	 the
entire	field?”	Or,	in	do-operator	notation,	what	is	P(yield	|	do(fertilizer	=	1))?

FIGURE	4.4.	Model	1:	an	improperly	controlled	experiment.

If	 the	 farmer	 performs	 the	 experiment	 naively,	 for	 example	 applying



Fertilizer	1	to	the	high	end	of	his	field	and	Fertilizer	2	to	the	low	end,	he	is
probably	 introducing	 Drainage	 as	 a	 confounder.	 If	 he	 uses	 Fertilizer	 1	 one
year	 and	Fertilizer	2	 the	next	year,	he	 is	probably	 introducing	Weather	 as	 a
confounder.	In	either	case,	he	will	get	a	biased	comparison.

The	world	that	the	farmer	wants	to	know	about	is	described	by	Model	2,
where	 all	 plots	 receive	 the	 same	 fertilizer	 (see	Figure	4.5).	As	 explained	 in
Chapter	1,	the	effect	of	the	do-operator	is	 to	erase	all	 the	arrows	pointing	to
Fertilizer	and	force	this	variable	to	a	particular	value—say,	Fertilizer	=	1.

FIGURE	4.5.	Model	2:	the	world	we	would	like	to	know	about.

Finally,	let’s	see	what	the	world	looks	like	when	we	apply	randomization.
Now	 some	 plots	 will	 be	 subjected	 to	 do(fertilizer	 =	 1)	 and	 others	 to
do(fertilizer	 =	 2),	 but	 the	 choice	 of	 which	 treatment	 goes	 to	 which	 plot	 is
random.	The	world	created	by	such	a	model	is	shown	by	Model	3	in	Figure
4.6,	 showing	 the	 variable	 Fertilizer	 obtaining	 its	 assignment	 by	 a	 random
device—say,	Fisher’s	deck	of	cards.

Notice	 that	 all	 the	 arrows	 pointing	 toward	 Fertilizer	 have	 been	 erased,
reflecting	 the	 assumption	 that	 the	 farmer	 listens	 only	 to	 the	 card	 when
deciding	which	fertilizer	to	use.	It	is	equally	important	to	note	that	there	is	no
arrow	from	Card	to	Yield,	because	the	plants	cannot	read	the	cards.	(This	is	a
fairly	safe	assumption	for	plants,	but	for	human	subjects	in	a	randomized	trial
it	 is	 a	 serious	 concern.)	 Therefore	Model	 3	 describes	 a	world	 in	which	 the
relation	 between	 Fertilizer	 and	 Yield	 is	 unconfounded	 (i.e.,	 there	 is	 no
common	 cause	 of	 Fertilizer	 and	 Yield).	 This	 means	 that	 in	 the	 world
described	by	Figure	4.6,	 there	 is	no	difference	between	seeing	Fertilizer	=	1
and	doing	Fertilizer	=	1.

FIGURE	4.6.	Model	3:	the	world	simulated	by	a	randomized	controlled	trial.

That	 brings	 us	 to	 the	 punch	 line:	 randomization	 is	 a	 way	 of	 simulating
Model	 2.	 It	 disables	 all	 the	 old	 confounders	 without	 introducing	 any	 new



confounders.	That	 is	 the	source	of	 its	power;	 there	 is	nothing	mysterious	or
mystical	about	it.	It	is	nothing	more	or	less	than,	as	Joan	Fisher	Box	said,	“the
skillful	interrogation	of	Nature.”

The	experiment	would,	however,	fail	in	its	objective	of	simulating	Model
2	if	either	the	experimenter	were	allowed	to	use	his	own	judgment	to	choose	a
fertilizer	or	 the	experimental	subjects,	 in	 this	case	 the	plants,	“knew”	which
card	 they	 had	 drawn.	 This	 is	why	 clinical	 trials	with	 human	 subjects	 go	 to
great	 lengths	 to	 conceal	 this	 information	 from	 both	 the	 patients	 and	 the
experimenters	(a	procedure	known	as	double	blinding).

I	will	add	to	this	a	second	punch	line:	there	are	other	ways	of	simulating
Model	2.	One	way,	 if	you	know	what	all	 the	possible	confounders	are,	 is	 to
measure	 and	 adjust	 for	 them.	However,	 randomization	 does	 have	 one	 great
advantage:	 it	 severs	 every	 incoming	 link	 to	 the	 randomized	 variable,
including	 the	 ones	 we	 don’t	 know	 about	 or	 cannot	 measure	 (e.g.,	 “Other”
factors	in	Figures	4.4	to	4.6).

By	contrast,	in	a	nonrandomized	study,	the	experimenter	must	rely	on	her
knowledge	 of	 the	 subject	 matter.	 If	 she	 is	 confident	 that	 her	 causal	 model
accounts	for	a	sufficient	number	of	deconfounders	and	she	has	gathered	data
on	them,	then	she	can	estimate	the	effect	of	Fertilizer	on	Yield	in	an	unbiased
way.	But	 the	danger	 is	 that	 she	may	have	missed	a	confounding	 factor,	 and
her	estimate	may	therefore	be	biased.

All	 things	 being	 equal,	RCTs	 are	 still	 preferred	 to	 observational	 studies,
just	as	safety	nets	are	recommended	for	tightrope	walkers.	But	all	things	are
not	 necessarily	 equal.	 In	 some	 cases,	 intervention	 may	 be	 physically
impossible	(for	instance,	 in	a	study	of	the	effect	of	obesity	on	heart	disease,
we	cannot	randomly	assign	patients	to	be	obese	or	not).	Or	intervention	may
be	 unethical	 (in	 a	 study	 of	 the	 effects	 of	 smoking,	 we	 can’t	 ask	 randomly
selected	 people	 to	 smoke	 for	 ten	 years).	 Or	 we	 may	 encounter	 difficulties
recruiting	subjects	for	inconvenient	experimental	procedures	and	end	up	with
volunteers	who	do	not	represent	the	intended	population.

Fortunately,	 the	 do-operator	 gives	 us	 scientifically	 sound	 ways	 of
determining	causal	effects	from	nonexperimental	studies,	which	challenge	the
traditional	 supremacy	 of	RCTs.	As	 discussed	 in	 the	walking	 example,	 such
causal	 estimates	 produced	 by	 observational	 studies	 may	 be	 labeled
“provisional	 causality,”	 that	 is,	 causality	 contingent	 upon	 the	 set	 of
assumptions	 that	 our	 causal	 diagram	 advertises.	 It	 is	 important	 that	 we	 not
treat	these	studies	as	second-class	citizens:	they	have	the	advantage	of	being
conducted	 in	 the	natural	habitat	of	 the	 target	population,	not	 in	 the	artificial



setting	 of	 a	 laboratory,	 and	 they	 can	 be	 “pure”	 in	 the	 sense	 of	 not	 being
contaminated	by	issues	of	ethics	or	feasibility.

Now	 that	 we	 understand	 that	 the	 principal	 objective	 of	 an	 RCT	 is	 to
eliminate	 confounding,	 let’s	 look	 at	 the	 other	 methods	 that	 the	 Causal
Revolution	has	given	us.	The	story	begins	with	a	1986	paper	by	 two	of	my
longtime	 colleagues,	 which	 started	 a	 reevaluation	 of	 what	 confounding
means.

THE	NEW	PARADIGM	OF	CONFOUNDING

“While	 confounding	 is	widely	 recognized	as	one	of	 the	 central	problems	 in
epidemiological	 research,	 a	 review	 of	 the	 literature	 will	 reveal	 little
consistency	among	 the	definitions	of	confounding	or	confounder.”	With	 this
one	sentence,	Sander	Greenland	of	the	University	of	California,	Los	Angeles,
and	Jamie	Robins	of	Harvard	University	put	their	finger	on	the	central	reason
why	 the	 control	 of	 confounding	 had	 not	 advanced	 one	 bit	 since	 Fisher.
Lacking	a	principled	understanding	of	confounding,	 scientists	could	not	 say
anything	 meaningful	 in	 observational	 studies	 where	 physical	 control	 over
treatments	is	infeasible.

How	was	confounding	defined	then,	and	how	should	it	be	defined?	Armed
with	what	we	now	know	about	the	logic	of	causality,	the	answer	to	the	second
question	 is	 easier.	The	quantity	we	observe	 is	 the	 conditional	probability	of
the	 outcome	given	 the	 treatment,	P(Y	 |	X).	The	 question	we	want	 to	 ask	 of
Nature	 has	 to	 do	 with	 the	 causal	 relationship	 between	 X	 and	 Y,	 which	 is
captured	 by	 the	 interventional	 probability	P(Y	 |	do(X)).	 Confounding,	 then,
should	simply	be	defined	as	anything	that	leads	to	a	discrepancy	between	the
two:	P(Y	|	X)	≠	P(Y	|	do(X)).	Why	all	the	fuss?

Unfortunately,	things	were	not	as	easy	as	that	before	the	1990s	because	the
do-operator	had	yet	to	be	formalized.	Even	today,	if	you	stop	a	statistician	in
the	 street	 and	 ask,	 “What	 does	 ‘confounding’	 mean	 to	 you?”	 you	 will
probably	get	one	of	 the	most	 convoluted	and	confounded	answers	you	ever
heard	 from	a	scientist.	One	 recent	book,	coauthored	by	 leading	statisticians,
spends	literally	two	pages	trying	to	explain	it,	and	I	have	yet	to	find	a	reader
who	understood	the	explanation.

The	reason	for	the	difficulty	is	that	confounding	is	not	a	statistical	notion.
It	 stands	 for	 the	 discrepancy	 between	 what	 we	 want	 to	 assess	 (the	 causal
effect)	and	what	we	actually	do	assess	using	statistical	methods.	If	you	can’t



articulate	mathematically	what	you	want	to	assess,	you	can’t	expect	to	define
what	constitutes	a	discrepancy.

Historically,	the	concept	of	“confounding”	has	evolved	around	two	related
conceptions:	 incomparability	 and	 a	 lurking	 third	 variable.	 Both	 of	 these
concepts	have	resisted	formalization.	When	we	talked	about	comparability,	in
the	 context	 of	 Daniel’s	 experiment,	 we	 said	 that	 the	 treatment	 and	 control
groups	should	be	identical	in	all	relevant	ways.	But	this	begs	us	to	distinguish
relevant	from	irrelevant	attributes.	How	do	we	know	that	age	is	relevant	in	the
Honolulu	walking	 study?	How	do	we	know	 that	 the	 alphabetical	 order	of	 a
participant’s	 name	 is	 not	 relevant?	 You	might	 say	 it’s	 obvious	 or	 common
sense,	but	generations	of	scientists	have	struggled	 to	articulate	 that	common
sense	formally,	and	a	robot	cannot	rely	on	our	common	sense	when	asked	to
act	properly.

The	 same	 ambiguity	 plagues	 the	 third-variable	 definition.	 Should	 a
confounder	 be	 a	 common	 cause	 of	 both	X	 and	Y	 or	merely	 correlated	with
each?	Today	we	can	answer	such	questions	by	referring	to	the	causal	diagram
and	 checking	which	 variables	 produce	 a	 discrepancy	 between	P(X	 |	Y)	 and
P(X	 |	 do(Y)).	 Lacking	 a	 diagram	 or	 a	 do-operator,	 five	 generations	 of
statisticians	 and	 health	 scientists	 had	 to	 struggle	 with	 surrogates,	 none	 of
which	were	satisfactory.	Considering	that	the	drugs	in	your	medicine	cabinet
may	 have	 been	 developed	 on	 the	 basis	 of	 a	 dubious	 definition	 of
“confounders,”	you	should	be	somewhat	concerned.

Let’s	 take	 a	 look	 at	 some	 of	 the	 surrogate	 definitions	 of	 confounding.
These	fall	into	two	main	categories,	declarative	and	procedural.	A	typical	(and
wrong)	declarative	definition	would	be	“A	confounder	is	any	variable	that	is
correlated	 with	 both	 X	 and	 Y.”	 On	 the	 other	 hand,	 a	 procedural	 definition
would	attempt	to	characterize	a	confounder	in	terms	of	a	statistical	test.	This
appeals	 to	statisticians,	who	love	any	 test	 that	can	be	performed	on	 the	data
directly	without	appealing	to	a	model.

Here	 is	 a	 procedural	 definition	 that	 goes	 by	 the	 scary	 name	 of
“noncollapsibility.”	 It	 comes	 from	 a	 1996	 paper	 by	 the	 Norwegian
epidemiologist	Sven	Hernberg:	“Formally	one	can	compare	the	crude	relative
risk	 and	 the	 relative	 risk	 resulting	 after	 adjustment	 for	 the	 potential
confounder.	A	difference	 indicates	confounding,	and	in	 that	case	one	should
use	 the	 adjusted	 risk	 estimate.	 If	 there	 is	 no	 or	 a	 negligible	 difference,
confounding	is	not	an	issue	and	the	crude	estimate	is	to	be	preferred.”	In	other
words,	 if	you	suspect	a	confounder,	 try	adjusting	for	 it	and	try	not	adjusting
for	 it.	 If	 there	 is	 a	 difference,	 it	 is	 a	 confounder,	 and	 you	 should	 trust	 the



adjusted	value.	If	there	is	no	difference,	you	are	off	the	hook.	Hernberg	was
by	no	means	the	first	person	to	advocate	such	an	approach;	it	has	misguided	a
century	of	epidemiologists,	economists,	and	social	scientists,	and	it	still	reigns
in	 certain	 quarters	 of	 applied	 statistics.	 I	 have	 picked	 on	 Hernberg	 only
because	he	was	unusually	explicit	about	it	and	because	he	wrote	this	in	1996,
well	after	the	Causal	Revolution	was	already	underway.

The	most	popular	of	 the	declarative	definitions	evolved	over	a	period	of
time.	Alfredo	Morabia,	 author	 of	A	History	 of	 Epidemiologic	 Methods	 and
Concepts,	calls	it	“the	classic	epidemiological	definition	of	confounding,”	and
it	 consists	 of	 three	 parts.	 A	 confounder	 of	 X	 (the	 treatment)	 and	 Y	 (the
outcome)	 is	 a	 variable	Z	 that	 is	 (1)	 associated	 with	X	 in	 the	 population	 at
large,	and	(2)	associated	with	Y	among	people	who	have	not	been	exposed	to
the	 treatment	 X.	 In	 recent	 years,	 this	 has	 been	 supplemented	 by	 a	 third
condition:	(3)	Z	should	not	be	on	the	causal	path	between	X	and	Y.

Observe	that	all	the	terms	in	the	“classic”	version	(1	and	2)	are	statistical.
In	particular,	Z	is	only	assumed	to	be	associated	with—not	a	cause	of—X	and
Y.	Edward	Simpson	proposed	the	rather	convoluted	condition	“Y	is	associated
with	 Z	 among	 the	 unexposed”	 in	 1951.	 From	 the	 causal	 point	 of	 view,	 it
seems	that	Simpson’s	idea	was	to	discount	the	part	of	the	correlation	of	Z	with
Y	that	is	due	to	the	causal	effect	of	X	on	Y;	in	other	words,	he	wanted	to	say
that	Z	has	an	effect	on	Y	independent	of	its	effect	on	X.	The	only	way	he	could
think	 to	 express	 this	 discounting	was	 to	 condition	 on	X	 by	 focusing	 on	 the
control	group	(X	=	0).	Statistical	vocabulary,	deprived	of	 the	word	“effect,”
gave	him	no	other	way	of	saying	it.

If	 this	 is	 a	 bit	 confusing,	 it	 should	 be!	How	much	 easier	 it	would	 have
been	 if	he	could	have	 simply	written	a	causal	diagram,	 like	Figure	4.1,	and
said,	“Y	 is	 associated	with	Z	 via	 paths	 not	 going	 through	X.”	But	 he	 didn’t
have	 this	 tool,	 and	 he	 couldn’t	 talk	 about	 paths,	 which	 were	 a	 forbidden
concept.

The	 “classical	 epidemiological	 definition”	 of	 a	 confounder	 has	 other
flaws,	as	the	following	two	examples	show:

and

In	example	(i),	Z	satisfies	conditions	(1)	and	(2)	but	is	not	a	confounder.	It
is	known	as	a	mediator:	it	is	the	variable	that	explains	the	causal	effect	of	X



on	Y.	It	is	a	disaster	to	control	for	Z	if	you	are	trying	to	find	the	causal	effect
of	X	on	Y.	 If	you	look	only	at	 those	individuals	 in	 the	treatment	and	control
groups	 for	whom	Z	 =	0,	 then	you	have	 completely	blocked	 the	 effect	 of	X,
because	it	works	by	changing	Z.	So	you	will	conclude	that	X	has	no	effect	on
Y.	This	is	exactly	what	Ezra	Klein	meant	when	he	said,	“Sometimes	you	end
up	controlling	for	the	thing	you’re	trying	to	measure.”

In	example	(ii),	Z	 is	a	proxy	 for	 the	mediator	M.	Statisticians	very	often
control	 for	 proxies	 when	 the	 actual	 causal	 variable	 can’t	 be	 measured;	 for
instance,	 party	 affiliation	 might	 be	 used	 as	 a	 proxy	 for	 political	 beliefs.
Because	Z	isn’t	a	perfect	measure	of	M,	some	of	the	influence	of	X	on	Y	might
“leak	 through”	 if	you	control	 for	Z.	Nevertheless,	 controlling	 for	Z	 is	still	a
mistake.	While	the	bias	might	be	less	than	if	you	controlled	for	M,	 it	 is	still
there.

For	 this	reason	later	statisticians,	notably	David	Cox	in	his	 textbook	The
Design	of	Experiments	 (1958),	warned	 that	you	should	only	control	 for	Z	 if
you	have	a	“strong	prior	reason”	to	believe	that	it	 is	not	affected	by	X.	This
“strong	 prior	 reason”	 is	 nothing	more	 or	 less	 than	 a	 causal	 assumption.	He
adds,	 “Such	 hypotheses	 may	 be	 perfectly	 in	 order,	 but	 the	 scientist	 should
always	be	aware	when	they	are	being	appealed	to.”	Remember	that	it’s	1958,
in	the	midst	of	the	great	prohibition	on	causality.	Cox	is	saying	that	you	can
go	 ahead	 and	 take	 a	 swig	 of	 causal	 moonshine	 when	 adjusting	 for
confounders,	but	don’t	 tell	 the	preacher.	A	daring	suggestion!	I	never	fail	 to
commend	him	for	his	bravery.

By	 1980,	 Simpson’s	 and	 Cox’s	 conditions	 had	 been	 combined	 into	 the
three-part	 test	 for	 confounding	 that	 I	 mentioned	 above.	 It	 is	 about	 as
trustworthy	 as	 a	 canoe	 with	 only	 three	 leaks.	 Even	 though	 it	 does	 make	 a
halfhearted	appeal	 to	causality	 in	part	 (3),	each	of	 the	first	 two	parts	can	be
shown	to	be	both	unnecessary	and	insufficient.

Greenland	and	Robins	drew	that	conclusion	in	their	landmark	1986	paper.
The	two	took	a	completely	new	approach	to	confounding,	which	they	called
“exchangeability.”	They	went	back	to	the	original	idea	that	the	control	group
(X	=	0)	should	be	comparable	to	the	treatment	group	(X	=	1).	But	they	added	a
counterfactual	 twist.	 (Remember	 from	Chapter	 1	 that	 counterfactuals	 are	 at
rung	three	of	the	Ladder	of	Causation	and	therefore	powerful	enough	to	detect
confounding.)	 Exchangeability	 requires	 the	 researcher	 to	 consider	 the
treatment	group,	imagine	what	would	have	happened	to	its	constituents	if	they
had	not	gotten	 treatment,	and	 then	 judge	whether	 the	outcome	would	be	 the
same	as	for	those	who	(in	reality)	did	not	receive	treatment.	Only	then	can	we



say	that	no	confounding	exists	in	the	study.

In	 1986,	 talking	 counterfactuals	 to	 an	 audience	 of	 epidemiologists	 took
some	 courage,	 because	 they	 were	 still	 very	 much	 under	 the	 influence	 of
classical	 statistics,	which	 holds	 that	 all	 the	 answers	 are	 in	 the	 data—not	 in
what	might	have	been,	which	will	remain	forever	unobserved.	However,	 the
statistical	community	was	somewhat	prepared	to	listen	to	such	heresy,	thanks
to	 the	 pioneering	 work	 of	 another	 Harvard	 statistician,	 Donald	 Rubin.	 In
Rubin’s	 “potential	 outcomes”	 framework,	 proposed	 in	 1974,	 counterfactual
variables	 like	 “Blood	 Pressure	 of	 Person	 X	 had	 he	 received	 Drug	D”	 and
“Blood	 Pressure	 of	 Person	 X	 had	 he	 not	 received	 Drug	 D”	 are	 just	 as
legitimate	as	a	traditional	variable	like	Blood	Pressure—despite	the	fact	that
one	of	those	two	variables	will	remain	forever	unobserved.

Robins	and	Greenland	set	out	to	express	their	conception	of	confounding
in	 terms	 of	 potential	 outcomes.	 They	 partitioned	 the	 population	 into	 four
types	 of	 individuals:	 doomed,	 causative,	 preventive,	 and	 immune.	 The
language	 is	suggestive,	so	 let’s	 think	of	 the	 treatment	X	as	a	 flu	vaccination
and	the	outcome	Y	as	coming	down	with	flu.	The	doomed	people	are	those	for
whom	the	vaccine	doesn’t	work;	they	will	get	flu	whether	they	get	the	vaccine
or	 not.	 The	 causative	 group	 (which	may	 be	 nonexistent)	 includes	 those	 for
whom	the	vaccine	actually	causes	the	disease.	The	preventive	group	consists
of	people	for	whom	the	vaccine	prevents	the	disease:	they	will	get	flu	if	they
are	not	vaccinated,	and	they	will	not	get	flu	if	they	are	vaccinated.	Finally,	the
immune	group	consists	of	people	who	will	not	get	flu	in	either	case.	Table	4.1
sums	up	these	considerations.

Ideally,	 each	 person	 would	 have	 a	 sticker	 on	 his	 forehead	 identifying
which	 group	 he	 belonged	 to.	 Exchangeability	 simply	 means	 that	 the
percentage	of	people	with	each	kind	of	sticker	(d	percent,	c	percent,	p	percent,
and	 i	 percent,	 respectively)	 should	 be	 the	 same	 in	 both	 the	 treatment	 and
control	groups.	Equality	among	these	proportions	guarantees	that	the	outcome
would	be	just	the	same	if	we	switched	the	treatments	and	controls.	Otherwise,
the	treatment	and	control	groups	are	not	alike,	and	our	estimate	of	the	effect
of	the	vaccine	will	be	confounded.	Note	that	the	two	groups	may	be	different
in	many	ways.	They	can	differ	in	age,	sex,	health	conditions,	and	a	variety	of
other	characteristics.	Only	equality	among	d,	c,	p,	and	 i	determines	whether
they	are	exchangeable	or	not.	So	exchangeability	amounts	to	equality	between
two	 sets	 of	 four	 proportions,	 a	 vast	 reduction	 in	 complexity	 from	 the
alternative	of	assessing	the	innumerable	factors	by	which	the	two	groups	may
differ.



TABLE	4.1.	Classification	of	individuals	according	to	response	type.

Using	this	commonsense	definition	of	confounding,	Greenland	and	Robins
showed	that	the	“statistical”	definitions,	both	declarative	and	procedural,	give
incorrect	answers.	A	variable	can	satisfy	the	three-part	test	of	epidemiologists
and	still	increase	bias,	if	adjusted	for.

Greenland	 and	 Robins’s	 definition	 was	 a	 great	 achievement,	 because	 it
enabled	them	to	give	explicit	examples	showing	that	the	previous	definitions
of	 confounding	 were	 inadequate.	 However,	 the	 definition	 could	 not	 be
translated	into	practice.	To	put	it	simply,	those	stickers	on	the	forehead	don’t
exist.	We	do	not	even	have	a	count	of	the	proportions	d,	c,	p,	and	 i.	 In	 fact,
this	is	precisely	the	kind	of	information	that	the	genie	of	Nature	keeps	locked
inside	 her	 magic	 lantern	 and	 doesn’t	 show	 to	 anybody.	 Lacking	 this
information,	the	researcher	is	left	to	intuit	whether	the	treatment	and	control
groups	are	exchangeable	or	not.

By	 now,	 I	 hope	 that	 your	 curiosity	 is	 well	 piqued.	 How	 can	 causal
diagrams	 turn	 this	massive	 headache	 of	 confounding	 into	 a	 fun	 game?	The
trick	lies	in	an	operational	test	for	confounding,	called	the	back-door	criterion.
This	 criterion	 turns	 the	 problem	 of	 defining	 confounding,	 identifying
confounders,	 and	 adjusting	 for	 them	 into	 a	 routine	 puzzle	 that	 is	 no	 more
challenging	 than	 solving	 a	 maze.	 It	 has	 thus	 brought	 the	 thorny,	 age-old
problem	to	a	happy	conclusion.

THE	DO-OPERATOR	AND	THE	BACK-DOOR	CRITERION

To	understand	the	back-door	criterion,	it	helps	first	to	have	an	intuitive	sense
of	how	information	flows	in	a	causal	diagram.	I	 like	to	think	of	 the	links	as
pipes	 that	convey	information	from	a	starting	point	X	 to	a	 finish	Y.	Keep	 in
mind	 that	 the	 conveying	 of	 information	 goes	 in	 both	 directions,	 causal	 and
noncausal,	as	we	saw	in	Chapter	3.



In	 fact,	 the	 noncausal	 paths	 are	 precisely	 the	 source	 of	 confounding.
Remember	 that	 I	 define	 confounding	 as	 anything	 that	 makes	 P(Y	 |	 do(X))
differ	from	P(Y	 |	X).	The	do-operator	erases	all	the	arrows	that	come	into	X,
and	 in	 this	 way	 it	 prevents	 any	 information	 about	 X	 from	 flowing	 in	 the
noncausal	 direction.	 Randomization	 has	 the	 same	 effect.	 So	 does	 statistical
adjustment,	if	we	pick	the	right	variables	to	adjust.

In	 the	 last	 chapter,	we	 looked	 at	 three	 rules	 that	 tell	 us	 how	 to	 stop	 the
flow	 of	 information	 through	 any	 individual	 junction.	 I	will	 repeat	 them	 for
emphasis:

(a)	 In	 a	 chain	 junction,	 A	 	 B	 	 C,	 controlling	 for	 B	 prevents
information	about	A	from	getting	to	C	or	vice	versa.

(b)	Likewise,	in	a	fork	or	confounding	junction,	A	 	B	 	C,	controlling
for	B	prevents	information	about	A	from	getting	to	C	or	vice	versa.

(c)	Finally,	 in	 a	 collider,	A	 	B	 	C,	 exactly	 the	 opposite	 rules	 hold.
The	 variables	A	 and	C	 start	 out	 independent,	 so	 that	 information
about	A	 tells	 you	 nothing	 about	C.	 But	 if	 you	 control	 for	B,	 then
information	 starts	 flowing	 through	 the	 “pipe,”	 due	 to	 the	 explain-
away	effect.

We	must	also	keep	in	mind	another	fundamental	rule:

(d)	 Controlling	 for	 descendants	 (or	 proxies)	 of	 a	 variable	 is	 like
“partially”	 controlling	 for	 the	 variable	 itself.	 Controlling	 for	 a
descendant	 of	 a	 mediator	 partly	 closes	 the	 pipe;	 controlling	 for	 a
descendant	of	a	collider	partly	opens	the	pipe.

Now,	what	if	we	have	longer	pipes	with	more	junctions,	like	this:

A	 	B	 	C	 	D	 	E	 	F	 	G	 	H	 	I	 	J?

The	answer	 is	very	simple:	 if	a	single	 junction	 is	blocked,	 then	J	 cannot
“find	 out”	 about	 A	 through	 this	 path.	 So	 we	 have	 many	 options	 to	 block
communication	between	A	and	J:	control	 for	B,	 control	 for	C,	 don’t	 control
for	D	(because	it’s	a	collider),	control	for	E,	and	so	forth.	Any	one	of	these	is
sufficient.	 This	 is	 why	 the	 usual	 statistical	 procedure	 of	 controlling	 for
everything	that	we	can	measure	is	so	misguided.	In	fact,	this	particular	path	is
blocked	if	we	don’t	control	for	anything!	The	colliders	at	D	and	G	block	the
path	without	any	outside	help.	Controlling	for	D	and	G	would	open	this	path
and	enable	J	to	listen	to	A.

Finally,	 to	deconfound	 two	variables	X	and	Y,	we	need	only	block	every
noncausal	 path	 between	 them	 without	 blocking	 or	 perturbing	 any	 causal



paths.	More	precisely,	 a	back-door	path	 is	 any	 path	 from	X	 to	Y	 that	 starts
with	 an	 arrow	 pointing	 into	X.	X	 and	Y	 will	 be	 deconfounded	 if	 we	 block
every	back-door	path	(because	such	paths	allow	spurious	correlation	between
X	 and	Y).	 If	we	 do	 this	 by	 controlling	 for	 some	 set	 of	 variables	Z,	we	 also
need	to	make	sure	that	no	member	of	Z	is	a	descendant	of	X	on	a	causal	path;
otherwise	we	might	partly	or	completely	close	off	that	path.

That’s	 all	 there	 is	 to	 it!	 With	 these	 rules,	 deconfounding	 becomes	 so
simple	 and	 fun	 that	 you	 can	 treat	 it	 like	 a	 game.	 I	 urge	 you	 to	 try	 a	 few
examples	just	 to	get	the	hang	of	it	and	see	how	easy	it	 is.	If	you	still	find	it
hard,	 be	 assured	 that	 algorithms	 exist	 that	 can	 crack	 all	 such	problems	 in	 a
matter	of	nanoseconds.	In	each	case,	the	goal	of	the	game	is	to	specify	a	set	of
variables	 that	will	 deconfound	X	 and	Y.	 In	 other	words,	 they	 should	 not	 be
descended	from	X,	and	they	should	block	all	the	back-door	paths.

GAME	1.

This	one	 is	easy!	There	are	no	arrows	leading	into	X,	 therefore	no	back-
door	paths.	We	don’t	need	to	control	for	anything.

Nevertheless,	 some	 researchers	 would	 consider	 B	 a	 confounder.	 It	 is
associated	with	X	because	of	 the	chain	X	 	A	 	B.	 It	 is	 associated	with	Y
among	individuals	with	X	=	0	because	there	is	an	open	path	B	 	A	 	Y	 that
does	 not	 pass	 through	X.	 And	B	 is	 not	 on	 the	 causal	 path	X	 	A	 	Y.	 It
therefore	 passes	 the	 three-step	 “classical	 epidemiological	 definition”	 for
confounding,	 but	 it	 does	 not	 pass	 the	 back-door	 criterion	 and	 will	 lead	 to
disaster	if	controlled	for.

GAME	2.

In	 this	 example	 you	 should	 think	 of	 A,	B,	C,	 and	D	 as	 “pretreatment”
variables.	(The	treatment,	as	usual,	is	X.)	Now	there	is	one	back-door	path	X	
	A	 	B	 	D	 	E	 	Y.	This	path	is	already	blocked	by	the	collider	at	B,	so



we	don’t	need	to	control	for	anything.	Many	statisticians	would	control	for	B
or	C,	 thinking	there	is	no	harm	in	doing	so	as	 long	as	they	occur	before	the
treatment.	A	leading	statistician	even	recently	wrote,	“To	avoid	conditioning
on	 some	 observed	 covariates…	 is	 nonscientific	 ad	 hockery.”	 He	 is	 wrong;
conditioning	on	B	or	C	 is	 a	 poor	 idea	because	 it	would	open	 the	noncausal
path	and	therefore	confound	X	and	Y.	Note	that	in	this	case	we	could	reclose
the	 path	 by	 controlling	 for	A	 or	D.	 This	 example	 shows	 that	 there	may	 be
different	 strategies	 for	 deconfounding.	 One	 researcher	 might	 take	 the	 easy
way	and	not	control	for	anything;	a	more	traditional	researcher	might	control
for	C	and	D.	Both	would	be	correct	and	should	get	the	same	result	(provided
that	the	model	is	correct,	and	we	have	a	large	enough	sample).

GAME	3.

In	Games	1	and	2	you	didn’t	have	 to	do	anything,	but	 this	 time	you	do.
There	 is	 one	 back-door	 path	 from	X	 to	Y,	X	 	B	 	Y,	 which	 can	 only	 be
blocked	by	 controlling	 for	B.	 If	B	 is	 unobservable,	 then	 there	 is	 no	way	 of
estimating	 the	 effect	 of	 X	 on	 Y	 without	 running	 a	 randomized	 controlled
experiment.	Some	(in	 fact,	most)	statisticians	 in	 this	situation	would	control
for	 A,	 as	 a	 proxy	 for	 the	 unobservable	 variable	 B,	 but	 this	 only	 partially
eliminates	the	confounding	bias	and	introduces	a	new	collider	bias.

GAME	4.

This	 one	 introduces	 a	 new	kind	of	 bias,	 called	 “M-bias”	 (named	 for	 the
shape	of	 the	 graph).	Once	 again	 there	 is	 only	 one	 back-door	 path,	 and	 it	 is
already	blocked	by	a	collider	at	B.	So	we	don’t	need	to	control	for	anything.
Nevertheless,	all	statisticians	before	1986	and	many	today	would	consider	B	a
confounder.	It	is	associated	with	X	(via	X	 	A	 	B)	and	associated	with	Y	via



a	path	that	doesn’t	go	through	X	(B	 	C	 	Y).	It	does	not	lie	on	a	causal	path
and	 is	 not	 a	 descendant	 of	 anything	 on	 a	 causal	 path,	 because	 there	 is	 no
causal	path	from	X	to	Y.	Therefore	B	passes	the	traditional	three-step	test	for	a
confounder.

M-bias	puts	a	finger	on	what	is	wrong	with	the	traditional	approach.	It	is
incorrect	 to	 call	 a	 variable,	 like	 B,	 a	 confounder	 merely	 because	 it	 is
associated	with	both	X	and	Y.	To	reiterate,	X	and	Y	are	unconfounded	if	we	do
not	control	for	B.	B	only	becomes	a	confounder	when	you	control	for	it!

When	I	started	showing	this	diagram	to	statisticians	in	the	1990s,	some	of
them	 laughed	 it	off	 and	 said	 that	 such	a	diagram	was	extremely	unlikely	 to
occur	 in	practice.	 I	disagree!	For	example,	seat-belt	usage	(B)	has	no	causal
effect	 on	 smoking	 (X)	 or	 lung	 disease	 (Y);	 it	 is	 merely	 an	 indicator	 of	 a
person’s	 attitudes	 toward	 societal	 norms	 (A)	 as	 well	 as	 safety	 and	 health-
related	measures	(C).	Some	of	these	attitudes	may	affect	susceptibility	to	lung
disease	(Y).	In	practice,	seatbelt	usage	was	found	to	be	correlated	with	both	X
and	Y;	 indeed,	 in	 a	 study	 conducted	 in	 2006	 as	 part	 of	 a	 tobacco	 litigation,
seat-belt	usage	was	listed	as	one	of	the	first	variables	to	be	controlled	for.	If
you	accept	the	above	model,	then	controlling	for	B	alone	would	be	a	mistake.

Note	 that	 it’s	 all	 right	 to	 control	 for	B	 if	 you	 also	 control	 for	 A	 or	C.
Controlling	 for	 the	 collider	B	 opens	 the	 “pipe,”	 but	 controlling	 for	A	 or	C
closes	it	again.	Unfortunately,	in	the	seat-belt	example,	A	and	C	are	variables
relating	 to	 people’s	 attitudes	 and	 not	 likely	 to	 be	 observable.	 If	 you	 can’t
observe	it,	you	can’t	adjust	for	it.

GAME	5.

Game	5	is	just	Game	4	with	a	little	extra	wrinkle.	Now	a	second	back-door
path	X	 	B	 	C	 	Y	needs	to	be	closed.	If	we	close	this	path	by	controlling
for	B,	then	we	open	up	the	M-shaped	path	X	 	A	 	B	 	C	 	Y.	To	close	that
path,	we	must	control	for	A	or	C	as	well.	However,	notice	that	we	could	just
control	for	C	alone;	that	would	close	the	path	X	 	B	 	C	 	Y	and	not	affect
the	other	path.

Games	 1	 through	 3	 come	 from	 a	 1993	 paper	 by	 Clarice	 Weinberg,	 a



deputy	 chief	 at	 the	 National	 Institutes	 of	 Health,	 called	 “Toward	 a	 Clearer
Definition	 of	 Confounding.”	 It	 came	 out	 during	 the	 transitional	 period
between	1986	and	1995,	when	Greenland	and	Robins’s	paper	was	available
but	 causal	 diagrams	were	 still	 not	 widely	 known.	Weinberg	 therefore	 went
through	 the	 considerable	 arithmetic	 exercise	 of	 verifying	 exchangeability	 in
each	 of	 the	 cases	 shown.	 Although	 she	 used	 graphical	 displays	 to
communicate	the	scenarios	involved,	she	did	not	use	the	logic	of	diagrams	to
assist	 in	 distinguishing	 confounders	 from	 deconfounders.	 She	 is	 the	 only
person	I	know	of	who	managed	this	feat.	Later,	in	2012,	she	collaborated	on
an	updated	version	that	analyzes	the	same	examples	with	causal	diagrams	and
verifies	that	all	her	conclusions	from	1993	were	correct.

In	both	of	Weinberg’s	papers,	the	medical	application	was	to	estimate	the
effect	 of	 smoking	 (X)	 on	 miscarriages,	 or	 “spontaneous	 abortions”	 (Y).	 In
Game	1,	A	represents	an	underlying	abnormality	that	is	induced	by	smoking;
this	 is	 not	 an	 observable	 variable	 because	 we	 don’t	 know	 what	 the
abnormality	is.	B	represents	a	history	of	previous	miscarriages.	It	is	very,	very
tempting	for	an	epidemiologist	to	take	previous	miscarriages	into	account	and
adjust	 for	 them	when	 estimating	 the	 probability	 of	 future	miscarriages.	But
that	 is	 the	wrong	thing	to	do	here!	By	doing	so	we	are	partially	inactivating
the	mechanism	through	which	smoking	acts,	and	we	will	thus	underestimate
the	true	effect	of	smoking.

Game	 2	 is	 a	 more	 complicated	 version	 where	 there	 are	 two	 different
smoking	 variables:	 X	 represents	 whether	 the	 mother	 smokes	 now	 (at	 the
beginning	of	the	second	pregnancy),	while	A	represents	whether	she	smoked
during	 the	 first	 pregnancy.	B	 and	E	 are	 underlying	 abnormalities	 caused	 by
smoking,	 which	 are	 unobservable,	 and	 D	 represents	 other	 physiological
causes	of	those	abnormalities.	Note	that	this	diagram	allows	for	the	fact	that
the	mother	could	have	changed	her	 smoking	behavior	between	pregnancies,
but	 the	 other	 physiological	 causes	 would	 not	 change.	 Again,	 many
epidemiologists	would	adjust	for	prior	miscarriages	(C),	but	this	is	a	bad	idea
unless	you	also	adjust	for	smoking	behavior	in	the	first	pregnancy	(A).

Games	4	and	5	come	from	a	paper	published	in	2014	by	Andrew	Forbes,	a
biostatistician	 at	 Monash	 University	 in	 Australia,	 along	 with	 several
collaborators.	He	 is	 interested	 in	 the	 effect	 of	 smoking	 on	 adult	 asthma.	 In
Game	 4,	 X	 represents	 an	 individual’s	 smoking	 behavior,	 and	 Y	 represents
whether	 the	 person	 has	 asthma	 as	 an	 adult.	B	 represents	 childhood	 asthma,
which	is	a	collider	because	it	is	affected	by	both	A,	parental	smoking,	and	C,
an	underlying	 (and	unobservable)	 predisposition	 toward	 asthma.	 In	Game	5
the	 variables	 have	 the	 same	 meanings,	 but	 Forbes	 added	 two	 arrows	 for



greater	realism.	(Game	4	was	only	meant	to	introduce	the	M-graph.)

In	fact,	the	full	model	in	Forbes’	paper	has	a	few	more	variables	and	looks
like	the	diagram	in	Figure	4.7.	Note	that	Game	5	is	embedded	in	this	model	in
the	 sense	 that	 the	 variables	 A,	 B,	 C,	 X,	 and	 Y	 have	 exactly	 the	 same
relationships.	So	we	can	transfer	our	conclusions	over	and	conclude	that	we
have	to	control	for	A	and	B	or	for	C;	but	C	 is	an	unobservable	and	therefore
uncontrollable	variable.	In	addition	we	have	four	new	confounding	variables:
D	=	parental	asthma,	E	=	chronic	bronchitis,	F	=	sex,	and	G	=	socioeconomic
status.	The	reader	might	enjoy	figuring	out	that	we	must	control	for	E,	F,	and
G,	but	 there	 is	no	need	 to	control	 for	D.	So	a	 sufficient	 set	of	variables	 for
deconfounding	is	A,	B,	E,	F,	and	G.

FIGURE	4.7.	Andrew	Forbes’s	model	of	smoking	(X)	and	asthma	(Y).

In	 the	 end,	 Forbes	 found	 that	 smoking	 had	 a	 small	 and	 statistically
insignificant	 association	 with	 adult	 asthma	 in	 the	 raw	 data,	 and	 the	 effect
became	 even	 smaller	 and	 more	 insignificant	 after	 adjusting	 for	 the
confounders.	The	null	 result	 should	not	 detract,	 however,	 from	 the	 fact	 that
his	paper	is	a	model	for	the	“skillful	interrogation	of	Nature.”

One	 final	 comment	 about	 these	 “games”:	when	you	 start	 identifying	 the
variables	as	smoking,	miscarriage,	and	so	forth,	they	are	quite	obviously	not
games	but	serious	business.	I	have	referred	to	them	as	games	because	the	joy
of	being	able	to	solve	them	swiftly	and	meaningfully	is	akin	to	the	pleasure	a
child	feels	on	figuring	out	that	he	can	crack	puzzles	that	stumped	him	before.

Few	moments	 in	a	scientific	career	are	as	satisfying	as	 taking	a	problem
that	has	puzzled	and	confused	generations	of	predecessors	and	reducing	it	to	a
straightforward	 game	 or	 algorithm.	 I	 consider	 the	 complete	 solution	 of	 the
confounding	 problem	 one	 of	 the	 main	 highlights	 of	 the	 Causal	 Revolution
because	 it	 ended	 an	 era	 of	 confusion	 that	 has	 probably	 resulted	 in	 many
wrong	decisions	in	the	past.	It	has	been	a	quiet	revolution,	raging	primarily	in



research	laboratories	and	scientific	meetings.	Yet,	armed	with	these	new	tools
and	insights,	the	scientific	community	is	now	tackling	harder	problems,	both
theoretical	and	practical,	as	subsequent	chapters	will	show.



“Abe	and	Yak”	(left	and	right,	respectively)	took	opposite	positions	on	the	hazards
of	cigarette	smoking.	As	was	typical	of	the	era,	both	were	smokers	(though	Abe
used	a	pipe).	The	smoking-cancer	debate	was	unusually	personal	for	many	of	the

scientists	who	participated	in	it.	(Source:	Drawing	by	Dakota	Harr.)
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THE	SMOKE-FILLED	DEBATE:
CLEARING	THE	AIR

At	last	the	sailors	said	to	each	other,	Come	and	let	us	cast	lots	to	find
out	who	is	to	blame	for	this	ordeal.

—JONAH	1:7

IN	the	late	1950s	and	early	1960s,	statisticians	and	doctors	clashed	over	one
of	the	highest-profile	medical	questions	of	 the	century:	Does	smoking	cause
lung	cancer?	Half	a	century	after	this	debate,	we	take	the	answer	for	granted.
But	 at	 that	 time,	 the	 issue	 was	 by	 no	 means	 clear.	 Scientists,	 and	 even
families,	were	divided.

Jacob	Yerushalmy’s	was	one	such	divided	family.	A	biostatistician	at	 the
University	of	California,	Berkeley,	Yerushalmy	(1904–1973)	was	one	of	 the
last	of	the	pro-tobacco	holdouts	in	academia.	“Yerushalmy	opposed	the	notion
that	cigarette	smoking	caused	cancer	until	his	dying	day,”	wrote	his	nephew
David	Lilienfeld	many	years	later.	On	the	other	hand,	Lilienfeld’s	father,	Abe
Lilienfeld,	was	an	epidemiologist	at	Johns	Hopkins	University	and	one	of	the
most	outspoken	proponents	of	the	theory	that	smoking	did	cause	cancer.	The
younger	Lilienfeld	recalled	how	Uncle	“Yak”	(short	for	Jacob)	and	his	father
would	sit	around	and	debate	the	effects	of	smoking,	wreathed	all	the	while	in
a	 “haze	 of	 smoke	 from	 Yak’s	 cigarette	 and	 Abe’s	 pipe”	 (see	 chapter
frontispiece).

If	only	Abe	and	Yak	had	been	able	 to	summon	the	Causal	Revolution	 to



clear	 the	 air!	 As	 this	 chapter	 shows,	 one	 of	 the	 most	 important	 scientific
arguments	against	 the	smoking-cancer	hypothesis	was	the	possible	existence
of	unmeasured	 factors	 that	 cause	both	 craving	 for	nicotine	 and	 lung	cancer.
We	 have	 just	 discussed	 such	 confounding	 patterns	 and	 noted	 that	 today’s
causal	diagrams	have	driven	the	menace	of	confounding	out	of	existence.	But
we	 are	 now	 in	 the	 1950s	 and	 1960s,	 two	 decades	 before	 Sander	Greenland
and	 Jamie	 Robins	 and	 three	 decades	 before	 anyone	 had	 heard	 of	 the	 do-
operator.	It	is	interesting	to	examine,	therefore,	how	scientists	of	that	era	dealt
with	 the	 issue	 and	 showed	 that	 the	 confounding	 argument	 is	 all	 smoke	 and
mirrors.

No	doubt	the	subject	of	many	of	Abe	and	Yak’s	smoke-filled	debates	was
neither	tobacco	nor	cancer.	It	was	that	innocuous	word	“caused.”	It	wasn’t	the
first	time	that	physicians	confronted	perplexing	causal	questions:	some	of	the
greatest	milestones	in	medical	history	dealt	with	identifying	causative	agents.
In	the	mid-1700s,	James	Lind	had	discovered	that	citrus	fruits	could	prevent
scurvy,	 and	 in	 the	 mid-1800s,	 John	 Snow	 had	 figured	 out	 that	 water
contaminated	with	 fecal	matter	 caused	 cholera.	 (Later	 research	 identified	 a
more	specific	causative	agent	 in	each	case:	vitamin	C	deficiency	for	scurvy,
the	cholera	bacillus	for	cholera.)	These	brilliant	pieces	of	detective	work	had
in	 common	 a	 fortunate	 one-to-one	 relation	 between	 cause	 and	 effect.	 The
cholera	bacillus	is	 the	only	cause	of	cholera;	or	as	we	would	say	today,	it	 is
both	necessary	and	sufficient.	 If	you	aren’t	exposed	 to	 it,	you	won’t	get	 the
disease.	Likewise,	a	vitamin	C	deficiency	is	necessary	to	produce	scurvy,	and
given	enough	time,	it	is	also	sufficient.

The	 smoking-cancer	 debate	 challenged	 this	 monolithic	 concept	 of
causation.	Many	people	 smoke	 their	whole	 lives	 and	never	get	 lung	cancer.
Conversely,	some	people	get	lung	cancer	without	ever	lighting	up	a	cigarette.
Some	people	may	get	it	because	of	a	hereditary	disposition,	others	because	of
exposure	to	carcinogens,	and	some	for	both	reasons.

Of	 course,	 statisticians	 already	 knew	 of	 one	 excellent	 way	 to	 establish
causation	in	a	more	general	sense:	the	randomized	controlled	trial	(RCT).	But
such	 a	 study	would	 be	 neither	 feasible	 nor	 ethical	 in	 the	 case	 of	 smoking.
How	 could	 you	 assign	 people	 chosen	 at	 random	 to	 smoke	 for	 decades,
possibly	 ruining	 their	health,	 just	 to	 see	 if	 they	would	get	 lung	cancer	 after
thirty	 years?	 It’s	 impossible	 to	 imagine	 anyone	 outside	 North	 Korea
“volunteering”	for	such	a	study.

Without	 a	 randomized	 controlled	 trial,	 there	 was	 no	 way	 to	 convince
skeptics	 like	Yerushalmy	and	R.	A.	Fisher,	who	were	committed	 to	 the	 idea



that	the	observed	association	between	smoking	and	lung	cancer	was	spurious.
To	 them,	 some	 lurking	 third	 factor	 could	 be	 producing	 the	 observed
association.	For	example,	there	could	be	a	smoking	gene	that	caused	people	to
crave	cigarettes	and	also,	at	the	same	time,	made	them	more	likely	to	develop
lung	 cancer	 (perhaps	 because	 of	 other	 lifestyle	 choices).	 The	 confounders
they	 suggested	 were	 implausible	 at	 best.	 Still,	 the	 onus	 was	 on	 the
antismoking	 contingent	 to	 prove	 there	 was	 no	 confounder—to	 prove	 a
negative,	which	Fisher	and	Yerushalmy	well	knew	is	almost	impossible.

The	final	breach	of	this	stalemate	is	a	tale	at	once	of	a	great	triumph	and	a
great	 opportunity	 missed.	 It	 was	 a	 triumph	 for	 public	 health	 because	 the
epidemiologists	did	get	it	right	in	the	end.	The	US	surgeon	general’s	report,	in
1964,	stated	in	no	uncertain	terms,	“Cigarette	smoking	 is	causally	 related	 to
lung	 cancer	 in	men.”	 This	 blunt	 statement	 forever	 shut	 down	 the	 argument
that	 smoking	was	“not	proven”	 to	cause	cancer.	The	 rate	of	 smoking	 in	 the
United	States	 among	men	began	 to	 decrease	 the	 following	year	 and	 is	 now
less	than	half	what	it	was	in	1964.	No	doubt	millions	of	lives	have	been	saved
and	lifespans	lengthened.

On	the	other	hand,	the	triumph	is	incomplete.	The	period	it	took	to	reach
the	above	conclusion,	roughly	from	1950	to	1964,	might	have	been	shorter	if
scientists	 had	been	 able	 to	 call	 upon	 a	more	principled	 theory	of	 causation.
And	most	significantly	from	the	point	of	view	of	this	book,	 the	scientists	of
the	1960s	did	not	really	put	 together	such	a	 theory.	To	justify	 the	claim	that
smoking	caused	cancer,	the	surgeon	general’s	committee	relied	on	an	informal
series	 of	 guidelines,	 called	 Hill’s	 criteria,	 named	 for	 University	 of	 London
statistician	Austin	Bradford	Hill.	Every	one	of	these	criteria	has	demonstrable
exceptions,	although	collectively	they	have	a	compelling	commonsense	value
and	even	wisdom.	From	the	overly	methodological	world	of	Fisher,	 the	Hill
guidelines	take	us	to	the	opposite	realm,	to	a	methodology-free	world	where
causality	 is	 decided	 on	 the	 basis	 of	 qualitative	 patterns	 of	 statistical	 trends.
The	 Causal	 Revolution	 builds	 a	 bridge	 between	 these	 two	 extremes,
empowering	our	intuitive	sense	of	causality	with	mathematical	rigor.	But	this
job	would	be	left	to	the	next	generation.

TOBACCO:	A	MANMADE	EPIDEMIC

In	 1902,	 cigarettes	 comprised	 only	 2	 percent	 of	 the	 US	 tobacco	 market;
spittoons	 rather	 than	 ashtrays	 were	 the	most	 ubiquitous	 symbol	 of	 tobacco
consumption.	But	two	powerful	forces	worked	together	to	change	Americans’



habits:	 automation	 and	 advertising.	 Machine-made	 cigarettes	 easily
outcompeted	 handcrafted	 cigars	 and	 pipes	 on	 the	 basis	 of	 availability	 and
cost.	Meanwhile,	the	tobacco	industry	invented	and	perfected	many	tricks	of
the	trade	of	advertising	(see	Figure	5.1).	People	who	watched	TV	in	the	1960s
can	easily	remember	any	number	of	catchy	cigarette	jingles,	from	“You	get	a
lot	to	like	in	a	Marlboro”	to	“You’ve	come	a	long	way,	baby.”

By	1952,	cigarettes’	share	of	the	tobacco	market	had	rocketed	from	2	to	81
percent,	and	the	market	itself	had	grown	dramatically.	This	sea	change	in	the
habits	 of	 a	 country	 had	unexpected	 ramifications	 for	 public	 health.	Even	 in
the	 early	 years	 of	 the	 twentieth	 century,	 there	 had	 been	 suspicions	 that
smoking	 was	 unhealthy,	 that	 it	 “irritated”	 the	 throat	 and	 caused	 coughing.
Around	 mid-century,	 the	 evidence	 started	 to	 become	 a	 good	 deal	 more
ominous.	Before	cigarettes,	lung	cancer	had	been	so	rare	that	a	doctor	might
encounter	it	only	once	in	a	lifetime	of	practice.	But	between	1900	and	1950,
the	 formerly	 rare	 disease	 quadrupled	 in	 frequency,	 and	 by	 1960	 it	 would
become	the	most	common	form	of	cancer	among	men.	Such	a	huge	change	in
the	incidence	of	a	lethal	disease	begged	for	an	explanation.



FIGURE	5.1.	Highly	manipulative	advertisements	were	intended	to	reassure	the	public

that	cigarettes	were	not	injurious	to	their	health—including	this	1948	ad	from	the
Journal	of	the	American	Medical	Association	targeting	the	doctors	themselves.



(Source:	From	the	collection	of	Stanford	Research	into	the	Impact	of	Tobacco
Advertising.)

With	hindsight,	 it	 is	 easy	 to	point	 the	 finger	of	blame	at	 smoking.	 If	we
plot	the	rates	of	lung	cancer	and	tobacco	consumption	on	a	graph	(see	Figure
5.2),	 the	 connection	 is	 impossible	 to	 miss.	 But	 time	 series	 data	 are	 poor
evidence	 for	 causality.	 Many	 other	 things	 had	 changed	 between	 1900	 and
1950	and	were	equally	plausible	culprits:	 the	paving	of	roads,	 the	inhalation
of	leaded	gasoline	fumes,	and	air	pollution	in	general.	British	epidemiologist
Richard	Doll	said	in	1991,	“Motor	cars…	were	a	new	factor	and	if	I	had	had
to	put	money	on	anything	at	the	time,	I	should	have	put	it	on	motor	exhausts
or	possibly	the	tarring	of	roads.”

FIGURE	5.2.	A	graph	of	the	per	capita	cigarette	consumption	rate	in	the	United	States

(black)	and	the	lung	cancer	death	rate	among	men	(gray)	shows	a	stunning
similarity:	the	cancer	curve	is	almost	a	replica	of	the	smoking	curve,	delayed	by
about	thirty	years.	Nevertheless,	this	evidence	is	circumstantial,	not	proof	of

causation.	Certain	key	dates	are	noted	here,	including	the	publication	of	Richard
Doll	and	Austin	Bradford	Hill’s	paper	in	1950,	which	first	alerted	many	medical
professionals	to	the	association	between	smoking	and	lung	cancer.	(Source:	Graph

by	Maayan	Harel,	using	data	from	the	American	Cancer	Society,	Centers	for
Disease	Control,	and	Office	of	the	Surgeon	General.)

The	 job	 of	 science	 is	 to	 put	 supposition	 aside	 and	 look	 at	 the	 facts.	 In



1948,	 Doll	 and	 Austin	 Bradford	 Hill	 teamed	 up	 to	 see	 if	 they	 could	 learn
anything	 about	 the	 causes	 of	 the	 cancer	 epidemic.	 Hill	 had	 been	 the	 chief
statistician	 on	 a	 highly	 successful	 randomized	 controlled	 trial,	 published
earlier	 that	 year,	 which	 had	 proved	 that	 streptomycin—one	 of	 the	 first
antibiotics—was	 effective	 against	 tuberculosis.	 The	 study,	 a	 landmark	 in
medical	 history,	 not	 only	 introduced	 doctors	 to	 “wonder	 drugs”	 but	 also
cemented	the	reputation	of	randomized	controlled	trials,	which	soon	became
the	standard	for	clinical	research	in	epidemiology.

Of	course	Hill	knew	that	an	RCT	was	impossible	in	this	case,	but	he	had
learned	the	advantages	of	comparing	a	treatment	group	to	a	control	group.	So
he	proposed	to	compare	patients	who	had	already	been	diagnosed	with	cancer
to	 a	 control	 group	 of	 healthy	 volunteers.	 Each	 group’s	 members	 were
interviewed	on	their	past	behaviors	and	medical	histories.	To	avoid	bias,	 the
interviewers	were	not	told	who	had	cancer	and	who	was	a	control.

The	 results	 of	 the	 study	were	 shocking:	 out	 of	 649	 lung	 cancer	 patients
interviewed,	 all	 but	 two	 had	 been	 smokers.	 This	 was	 a	 statistical
improbability	 so	 extreme	 that	Doll	 and	Hill	 couldn’t	 resist	working	 out	 the
exact	odds	against	it:	1.5	million	to	1.	Also,	the	lung	cancer	patients	had	been
heavier	smokers	on	average	than	the	controls,	but	(in	an	inconsistency	that	R.
A.	Fisher	would	later	pounce	on)	a	smaller	percentage	reported	inhaling	their
smoke.

The	 type	 of	 study	Doll	 and	Hill	 conducted	 is	 now	 called	 a	 case-control
study	 because	 it	 compares	 “cases”	 (people	with	 a	 disease)	 to	 controls.	 It	 is
clearly	an	improvement	over	time	series	data,	because	researchers	can	control
for	 confounders	 like	 age,	 sex,	 and	 exposure	 to	 environmental	 pollutants.
Nevertheless,	 the	 case-control	 design	 has	 some	 obvious	 drawbacks.	 It	 is
retrospective;	 that	 means	 we	 study	 people	 known	 to	 have	 cancer	 and	 look
backward	 to	 discover	why.	The	probability	 logic	 is	 backward	 too.	The	data
tell	 us	 the	 probability	 that	 a	 cancer	 patient	 is	 a	 smoker	 instead	 of	 the
probability	that	a	smoker	will	get	cancer.	It	is	the	latter	probability	that	really
matters	to	a	person	who	wants	to	know	whether	he	should	smoke	or	not.

In	 addition,	 case-control	 studies	 admit	 several	 possible	 sources	 of	 bias.
One	 of	 them	 is	 called	 recall	 bias:	 although	 Doll	 and	 Hill	 ensured	 that	 the
interviewers	didn’t	know	the	diagnoses,	 the	patients	certainly	knew	whether
they	had	cancer	or	not.	This	could	have	affected	their	recollections.	Another
problem	 is	 selection	 bias.	 Hospitalized	 cancer	 patients	 were	 in	 no	 way	 a
representative	sample	of	the	population,	or	even	of	the	smoking	population.

In	short,	Doll	and	Hill’s	results	were	extremely	suggestive	but	could	not	be



taken	as	proof	that	smoking	causes	cancer.	The	two	researchers	were	careful
at	 first	 to	 call	 the	 correlation	 an	 “association.”	 After	 dismissing	 several
confounders,	they	ventured	a	stronger	assertion	that	“smoking	is	a	factor,	and
an	important	factor,	in	the	production	of	carcinoma	of	the	lung.”

Over	 the	 next	 few	 years,	 nineteen	 case-control	 studies	 conducted	 in
different	countries	all	arrived	at	basically	 the	same	conclusion.	But	as	R.	A.
Fisher	 was	 only	 too	 happy	 to	 point	 out,	 repeating	 a	 biased	 study	 nineteen
times	doesn’t	prove	anything.	It’s	still	biased.	Fisher	wrote	in	1957	that	these
studies	 “were	 mere	 repetitions	 of	 evidence	 of	 the	 same	 kind,	 and	 it	 is
necessary	 to	 try	 to	examine	whether	 that	kind	 is	sufficient	 for	any	scientific
conclusion.”

Doll	and	Hill	realized	that	if	there	were	hidden	biases	in	the	case-control
studies,	mere	replication	would	not	overcome	them.	Thus,	in	1951	they	began
a	prospective	study,	for	which	they	sent	out	questionnaires	to	60,000	British
physicians	 about	 their	 smoking	 habits	 and	 followed	 them	 forward	 in	 time.
(The	American	Cancer	Society	launched	a	similar	and	larger	study	around	the
same	 time.)	 Even	 in	 just	 five	 years,	 some	 dramatic	 differences	 emerged.
Heavy	smokers	had	a	death	 rate	 from	 lung	cancer	 twenty-four	 times	 that	of
nonsmokers.	 In	 the	 American	 Cancer	 Society	 study,	 the	 results	 were	 even
grimmer:	smokers	died	from	lung	cancer	 twenty-nine	 times	more	often	 than
nonsmokers,	and	heavy	smokers	died	ninety	 times	more	often.	On	 the	other
hand,	people	who	had	smoked	and	then	stopped	reduced	their	risk	by	a	factor
of	two.	The	consistency	of	all	these	results—more	smoking	leads	to	a	higher
risk	 of	 cancer,	 stopping	 leads	 to	 a	 lower	 risk—was	 another	 strong	 piece	 of
evidence	for	causality.	Doctors	call	it	a	“dose-response	effect”:	if	substance	A
causes	a	biological	effect	B,	then	usually	(though	not	always)	a	larger	dose	of
A	causes	a	stronger	response	B.

Nevertheless,	 skeptics	 like	 Fisher	 and	 Yerushalmy	 would	 not	 be
convinced.	 The	 prospective	 studies	 still	 failed	 to	 compare	 smokers	 to
otherwise	identical	nonsmokers.	In	fact,	it	is	not	clear	that	such	a	comparison
can	 be	 made.	 Smokers	 are	 self-selecting.	 They	 may	 be	 genetically	 or
“constitutionally”	different	from	nonsmokers	in	a	number	of	ways—more	risk
taking,	likelier	to	drink	heavily.	Some	of	these	behaviors	might	cause	adverse
health	 effects	 that	 might	 otherwise	 be	 attributed	 to	 smoking.	 This	 was	 an
especially	 convenient	 argument	 for	 a	 skeptic	 to	 make	 because	 the
constitutional	hypothesis	was	almost	untestable.	Only	after	the	sequencing	of
the	human	genome	in	2000	did	it	become	possible	to	look	for	genes	linked	to
lung	cancer.	(Ironically,	Fisher	was	proven	right,	albeit	in	a	very	limited	way:
such	genes	do	exist.)	However,	 in	1959	Jerome	Cornfield,	writing	with	Abe



Lilienfeld,	published	a	point-by-point	 rebuttal	of	Fisher’s	arguments	 that,	 in
many	 physicians’	 eyes,	 settled	 the	 issue.	 Cornfield,	 who	 worked	 at	 the
National	 Institutes	 of	 Health,	 was	 an	 unusual	 participant	 in	 the	 smoking-
cancer	 debate.	 Neither	 a	 statistician	 nor	 a	 biologist	 by	 training,	 he	 had
majored	in	history	and	learned	statistics	at	the	US	Department	of	Agriculture.
Though	 somewhat	 self-taught,	 he	 eventually	 became	 a	 highly	 sought
consultant	and	president	of	the	American	Statistical	Association.	He	also	had
been	a	2.5-pack-a-day	 smoker	but	gave	up	his	habit	when	he	 started	 seeing
the	 data	 on	 lung	 cancer.	 (It	 is	 interesting	 to	 see	 how	 personal	 the	 smoking
debate	 was	 for	 the	 scientists	 involved.	 Fisher	 never	 gave	 up	 his	 pipe,	 and
Yerushalmy	never	gave	up	his	cigarettes.)

Cornfield	took	direct	aim	at	Fisher’s	constitutional	hypothesis,	and	he	did
so	 on	 Fisher’s	 own	 turf:	 mathematics.	 Suppose,	 he	 argued,	 that	 there	 is	 a
confounding	factor,	such	as	a	smoking	gene,	that	completely	accounts	for	the
cancer	risk	of	smokers.	If	smokers	have	nine	times	the	risk	of	developing	lung
cancer,	the	confounding	factor	needs	to	be	at	least	nine	times	more	common
in	smokers	to	explain	the	difference	in	risk.	Think	of	what	this	means.	If	11
percent	 of	 nonsmokers	 have	 the	 “smoking	 gene,”	 then	 99	 percent	 of	 the
smokers	would	have	to	have	it.	And	if	even	12	percent	of	nonsmokers	happen
to	have	 the	 cancer	gene,	 then	 it	 becomes	mathematically	 impossible	 for	 the
cancer	gene	to	account	fully	for	the	association	between	smoking	and	cancer.
To	 biologists,	 this	 argument,	 called	 Cornfield’s	 inequality,	 reduced	 Fisher’s
constitutional	hypothesis	 to	smoking	ruins.	 It	 is	 inconceivable	 that	a	genetic
variation	 could	 be	 so	 tightly	 linked	 to	 something	 as	 complex	 and
unpredictable	as	a	person’s	choice	to	smoke.

Cornfield’s	inequality	was	actually	a	causal	argument	in	embryonic	form:
it	 gives	 us	 a	 criterion	 for	 adjudicating	 between	 Diagram	 5.1	 (in	 which	 the
constitutional	 hypothesis	 cannot	 fully	 explain	 the	 association	 between
smoking	 and	 lung	 cancer)	 and	 Diagram	 5.2	 (in	 which	 the	 smoking	 gene
would	fully	account	for	the	observed	association).

DIAGRAM	5.1.



DIAGRAM	5.2.

As	explained	above,	the	association	between	smoking	and	lung	cancer	was
much	too	strong	to	be	explained	by	the	constitutional	hypothesis.

In	fact,	Cornfield’s	method	planted	the	seeds	of	a	very	powerful	technique
called	“sensitivity	analysis,”	which	today	supplements	the	conclusions	drawn
from	 the	 inference	 engine	described	 in	 the	 Introduction.	 Instead	of	 drawing
inferences	 by	 assuming	 the	 absence	 of	 certain	 causal	 relationships	 in	 the
model,	 the	 analyst	 challenges	 such	 assumptions	 and	 evaluates	 how	 strong
alternative	 relationships	must	 be	 in	 order	 to	 explain	 the	 observed	 data.	The
quantitative	result	 is	 then	submitted	to	a	 judgment	of	plausibility,	not	unlike
the	 crude	 judgments	 invoked	 in	 positing	 the	 absence	 of	 those	 causal
relationships.	Needless	to	say,	if	we	want	to	extend	Cornfield’s	approach	to	a
model	 with	 more	 than	 three	 or	 four	 variables,	 we	 need	 algorithms	 and
estimation	 techniques	 that	 are	 unthinkable	 without	 the	 advent	 of	 graphical
tools.

Epidemiologists	 in	 the	1950s	 faced	 the	 criticism	 that	 their	 evidence	was
“only	statistical.”	There	was	allegedly	no	“laboratory	proof.”	But	even	a	look
at	 history	 shows	 that	 this	 argument	 was	 specious.	 If	 the	 standard	 of
“laboratory	 proof”	 had	 been	 applied	 to	 scurvy,	 then	 sailors	 would	 have
continued	 dying	 right	 up	 until	 the	 1930s,	 because	 until	 the	 discovery	 of
vitamin	C,	there	was	no	“laboratory	proof”	that	citrus	fruits	prevented	scurvy.
Furthermore,	 in	 the	 1950s	 some	 types	 of	 laboratory	 proof	 of	 the	 effects	 of
smoking	did	start	to	appear	in	medical	journals.	Rats	painted	with	cigarette	tar
developed	 cancer.	 Cigarette	 smoke	 was	 proven	 to	 contain	 benzopyrenes,	 a
previously	 known	 carcinogen.	 These	 experiments	 increased	 the	 biological
plausibility	of	the	hypothesis	that	smoking	could	cause	cancer.

By	the	end	of	the	decade,	the	accumulation	of	so	many	different	kinds	of
evidence	 had	 convinced	 almost	 all	 experts	 in	 the	 field	 that	 smoking	 indeed
caused	cancer.	Remarkably,	even	researchers	at	 the	 tobacco	companies	were
convinced—a	fact	that	stayed	deeply	hidden	until	 the	1990s,	when	litigation
and	whistle-blowers	forced	tobacco	companies	to	release	many	thousands	of
previously	 secret	 documents.	 In	 1953,	 for	 example,	 a	 chemist	 at	 R.J.
Reynolds,	Claude	Teague,	 had	written	 to	 the	 company’s	upper	management



that	 tobacco	was	 “an	 important	 etiologic	 factor	 in	 the	 induction	 of	 primary
cancer	 of	 the	 lung,”	 nearly	 a	 word-for-word	 repetition	 of	 Hill	 and	 Doll’s
conclusion.

In	public,	the	cigarette	companies	sang	a	different	tune.	In	January	1954,
the	 leading	 tobacco	companies	 (including	Reynolds)	published	a	nationwide
newspaper	 advertisement,	 “A	 Frank	 Statement	 to	 Cigarette	 Smokers,”	 that
said,	“We	believe	the	products	we	make	are	not	injurious	to	health.	We	always
have	 and	 always	 will	 cooperate	 closely	 with	 those	 whose	 task	 it	 is	 to
safeguard	 the	 public	 health.”	 In	 a	 speech	 given	 in	 March	 1954,	 George
Weissman,	vice	president	of	Philip	Morris	and	Company,	said,	“If	we	had	any
thought	or	knowledge	that	 in	any	way	we	were	selling	a	product	harmful	 to
consumers,	we	would	stop	business	tomorrow.”	Sixty	years	later,	we	are	still
waiting	for	Philip	Morris	to	keep	that	promise.

This	 brings	 us	 to	 the	 saddest	 episode	 in	 the	 whole	 smoking-cancer
controversy:	 the	 deliberate	 efforts	 of	 the	 tobacco	 companies	 to	 deceive	 the
public	about	the	health	risks.	If	Nature	is	like	a	genie	that	answers	a	question
truthfully	but	only	exactly	as	it	is	asked,	imagine	how	much	more	difficult	it
is	for	scientists	to	face	an	adversary	that	intends	to	deceive	us.	The	cigarette
wars	were	science’s	first	confrontation	with	organized	denialism,	and	no	one
was	 prepared.	 The	 tobacco	 companies	 magnified	 any	 shred	 of	 scientific
controversy	 they	 could.	 They	 set	 up	 their	 own	 Tobacco	 Industry	 Research
Committee,	a	front	organization	that	gave	money	to	scientists	to	study	issues
related	 to	 cancer	 or	 tobacco—but	 somehow	never	 got	 around	 to	 the	 central
question.	 When	 they	 could	 find	 legitimate	 skeptics	 of	 the	 smoking-cancer
connection—such	 as	 R.	 A.	 Fisher	 and	 Jacob	 Yerushalmy—the	 tobacco
companies	paid	them	consulting	fees.

The	case	of	Fisher	is	particularly	sad.	Of	course,	skepticism	has	its	place.
Statisticians	are	paid	 to	be	skeptics;	 they	are	 the	conscience	of	 science.	But
there	is	a	difference	between	reasonable	and	unreasonable	skepticism.	Fisher
crossed	 that	 line	 and	 then	 some.	Always	unable	 to	 admit	his	own	mistakes,
and	 surely	 influenced	 by	 his	 lifetime	 pipe-smoking	 habit,	 he	 could	 not
acknowledge	that	the	tide	of	evidence	had	turned	against	him.	His	arguments
became	desperate.	He	seized	on	one	counterintuitive	result	in	Doll	and	Hill’s
first	 paper—the	 finding	 (which	 barely	 reached	 the	 level	 of	 statistical
significance)	 that	 lung	 cancer	 patients	 described	 themselves	 as	 inhalers	 less
often	 than	 the	 controls—and	 would	 not	 let	 it	 go.	 None	 of	 the	 subsequent
studies	found	any	such	effect.	Although	Fisher	knew	as	well	as	anybody	that
“statistically	significant”	results	sometimes	fail	to	be	replicated,	he	resorted	to
mockery.	He	argued	that	their	study	had	showed	that	inhaling	cigarette	smoke



might	 be	 beneficial	 and	 called	 for	 further	 research	 on	 this	 “extremely
important	point.”	Perhaps	 the	only	positive	 thing	we	can	 say	about	Fisher’s
role	in	the	debate	is	that	it	is	very	unlikely	that	tobacco	money	corrupted	him
in	any	way.	His	own	obstinacy	was	sufficient.

For	 all	 these	 reasons,	 the	 link	 between	 smoking	 and	 cancer	 remained
controversial	 in	 the	 public	 mind	 long	 after	 it	 had	 ended	 among
epidemiologists.	 Even	 doctors,	 who	 should	 have	 been	 more	 attuned	 to	 the
science,	 remained	 unconvinced:	 a	 poll	 conducted	 by	 the	 American	 Cancer
Society	in	1960	showed	that	only	a	third	of	American	doctors	agreed	with	the
statement	that	smoking	was	“a	major	cause	of	lung	cancer,”	and	43	percent	of
doctors	were	themselves	smokers.

While	 we	 may	 justly	 blame	 Fisher	 for	 his	 obduracy	 and	 the	 tobacco
companies	for	their	deliberate	deception,	we	must	also	acknowledge	that	the
scientific	community	was	laboring	in	an	ideological	straightjacket.	Fisher	had
been	right	to	promote	randomized	controlled	trials	as	a	highly	effective	way
to	assess	a	causal	effect.	However,	he	and	his	followers	failed	to	realize	that
there	is	much	we	can	learn	from	observational	studies.	That	is	the	benefit	of	a
causal	model:	 it	 leverages	 the	 experimenter’s	 scientific	 knowledge.	 Fisher’s
methods	assume	that	the	experimenter	begins	with	no	prior	knowledge	of	or
opinions	 about	 the	 hypothesis	 to	 be	 tested.	 They	 impose	 ignorance	 on	 the
scientist,	a	situation	that	the	denialists	eagerly	took	advantage	of.

Because	 scientists	had	no	straightforward	definition	of	 the	word	“cause”
and	no	way	to	ascertain	a	causal	effect	without	a	randomized	controlled	trial,
they	were	ill	prepared	for	a	debate	over	whether	smoking	caused	cancer.	They
were	forced	 to	 fumble	 their	way	 toward	a	definition	 in	a	process	 that	 lasted
throughout	the	1950s	and	reached	a	dramatic	conclusion	in	1964.

THE	SURGEON	GENERAL’S	COMMISSION	AND	HILL’S
CRITERIA

The	 paper	 by	 Cornfield	 and	 Lilienfeld	 had	 paved	 the	 way	 for	 a	 definitive
statement	 by	 health	 authorities	 about	 the	 effects	 of	 smoking.	 The	 Royal
College	of	Physicians	in	the	United	Kingdom	took	the	lead,	issuing	a	report	in
1962	concluding	that	cigarette	smoking	was	a	causative	agent	in	lung	cancer.
Shortly	 thereafter,	US	Surgeon	General	 Luther	 Terry	 (quite	 possibly	 on	 the
urging	 of	 President	 John	 F.	Kennedy)	 announced	 his	 intention	 to	 appoint	 a
special	advisory	committee	to	study	the	matter	(see	Figure	5.3).



The	 committee	was	 carefully	 balanced	 to	 include	 five	 smokers	 and	 five
nonsmokers,	two	people	suggested	by	the	tobacco	industry,	and	nobody	who
had	 previously	 made	 public	 statements	 for	 or	 against	 smoking.	 For	 that
reason,	people	like	Lilienfeld	and	Cornfield	were	ineligible.	The	members	of
the	committee	were	distinguished	experts	in	medicine,	chemistry,	or	biology.
One	of	 them,	William	Cochran	of	Harvard	University,	was	 a	 statistician.	 In
fact,	 Cochran’s	 credentials	 in	 statistics	 were	 the	 best	 possible:	 he	 was	 a
student	of	a	student	of	Karl	Pearson.

FIGURE	5.3.	In	1963,	a	surgeon	general’s	advisory	committee	wrestled	with	the

problem	of	how	to	assess	the	causal	effects	of	smoking.	Depicted	here	are	William
Cochran	(the	committee’s	statistician),	Surgeon	General	Luther	Terry,	and	chemist

Louis	Fieser.	(Source:	Drawing	by	Dakota	Harr.)

The	 committee	 labored	 for	more	 than	 a	 year	 on	 its	 report,	 and	 a	major
issue	was	 the	use	of	 the	word	“cause.”	The	committee	members	had	 to	put
aside	nineteenth-century	deterministic	conceptions	of	causality,	and	they	also
had	 to	 put	 aside	 statistics.	As	 they	 (probably	Cochran)	wrote	 in	 the	 report,
“Statistical	 methods	 cannot	 establish	 proof	 of	 a	 causal	 relationship	 in	 an
association.	The	causal	significance	of	an	association	is	a	matter	of	judgment
which	 goes	 beyond	 any	 statement	 of	 statistical	 probability.	 To	 judge	 or
evaluate	 the	 causal	 significance	 of	 the	 association	 between	 the	 attribute	 or
agent	 and	 the	 disease,	 or	 effect	 upon	 health,	 a	 number	 of	 criteria	 must	 be
utilized,	 no	 one	 of	 which	 is	 an	 all-sufficient	 basis	 for	 judgment.”	 The
committee	 listed	 five	 such	 criteria:	 consistency	 (many	 studies,	 in	 different
populations,	show	similar	results);	strength	of	association	(including	the	dose-



response	effect:	more	smoking	is	associated	with	a	higher	risk);	specificity	of
the	association	 (a	 particular	 agent	 should	 have	 a	 particular	 effect	 and	 not	 a
long	 litany	 of	 effects);	 temporal	 relationship	 (the	 effect	 should	 follow	 the
cause);	 and	 coherence	 (biological	 plausibility	 and	 consistency	 with	 other
types	of	evidence	such	as	laboratory	experiments	and	time	series).

In	1965,	Austin	Bradford	Hill,	who	was	not	on	the	committee,	attempted
to	 summarize	 the	 arguments	 in	 a	way	 that	 could	 be	 applied	 to	 other	 public
health	problems	and	added	four	more	criteria	to	the	list;	as	a	result,	the	whole
list	 of	 nine	 criteria	 have	 become	 known	 as	 “Hill’s	 criteria.”	 Actually	 Hill
called	them	“viewpoints,”	not	requirements,	and	emphasized	that	any	of	them
might	 be	 lacking	 in	 any	 particular	 case.	 “None	 of	my	 nine	 viewpoints	 can
bring	 indisputable	 evidence	 for	 or	 against	 the	 cause-and-effect	 hypothesis,
and	none	can	be	required	as	a	sine	qua	non,”	he	wrote.

Indeed,	 it	 is	 quite	 easy	 to	 find	 arguments	 against	 each	 of	 the	 criteria	 on
either	Hill’s	list	or	the	advisory	committee’s	shorter	list.	Consistency	by	itself
proves	 nothing;	 if	 thirty	 studies	 each	 ignore	 the	 same	 confounder,	 all	 can
easily	be	biased.	Strength	of	association	is	vulnerable	for	the	same	reason;	as
pointed	out	earlier,	children’s	shoe	sizes	are	strongly	associated	with	but	not
causally	 related	 to	 their	 reading	 aptitude.	 Specificity	 has	 always	 been	 a
particularly	controversial	criterion.	It	makes	sense	in	the	context	of	infectious
disease,	 where	 one	 agent	 typically	 produces	 one	 illness,	 but	 less	 so	 in	 the
context	of	 environmental	 exposure.	Smoking	 leads	 to	an	 increased	 risk	of	 a
variety	 of	 other	 diseases,	 such	 as	 emphysema	 and	 cardiovascular	 disease.
Does	this	really	weaken	the	evidence	that	it	causes	cancer?	Temporal	relation
has	some	exceptions,	as	mentioned	before—for	example,	a	rooster	crow	does
not	 cause	 the	 sun	 to	 rise,	 even	 though	 it	 always	 precedes	 the	 sun.	 Finally,
coherence	 with	 established	 theory	 or	 facts	 is	 certainly	 desirable,	 but	 the
history	of	science	 is	 filled	with	overturned	 theories	and	mistaken	 laboratory
findings.

Hill’s	 “viewpoints”	 are	 still	 useful	 as	 a	 description	 of	 how	 a	 discipline
comes	 to	 accept	 a	 causal	 hypothesis,	 using	 a	 variety	 of	 evidence,	 but	 they
came	 with	 no	 methodology	 to	 implement	 them.	 For	 example,	 biological
plausibility	 and	 consistency	 with	 experiments	 are	 supposedly	 good	 things.
But	how,	precisely,	are	we	supposed	to	weigh	these	kinds	of	evidence?	How
do	we	bring	preexisting	knowledge	into	the	picture?	Apparently	each	scientist
just	 has	 to	 decide	 for	 him-	 or	 herself.	 But	 gut	 decisions	 can	 be	 wrong,
especially	if	there	are	political	pressures	or	monetary	considerations	or	if	the
scientist	is	addicted	to	the	substance	being	studied.



None	 of	 these	 comments	 is	 intended	 to	 denigrate	 the	 work	 of	 the
committee.	 Its	 members	 did	 the	 best	 they	 could	 in	 an	 environment	 that
provided	them	with	no	mechanism	for	discussing	causality.	Their	recognition
that	nonstatistical	criteria	were	necessary	was	a	great	 step	 forward.	And	 the
difficult	personal	decisions	that	the	smokers	on	the	committee	made	attest	to
the	 seriousness	of	 their	 conclusions.	Luther	Terry,	who	had	been	a	cigarette
smoker,	 switched	 to	 a	 pipe.	 Leonard	 Schuman	 announced	 that	 he	 was
quitting.	 William	 Cochran	 acknowledged	 that	 he	 could	 reduce	 his	 risk	 of
cancer	by	quitting	but	felt	 that	the	“comfort	of	my	cigarettes”	was	sufficient
compensation	 for	 the	 risk.	 Most	 painfully,	 Louis	 Fieser,	 a	 four-pack-a-day
smoker,	was	diagnosed	with	lung	cancer	less	than	a	year	after	the	report.	He
wrote	to	the	committee,	“You	may	recall	that	although	fully	convinced	by	the
evidence,	 I	 continued	 heavy	 smoking	 throughout	 the	 deliberations	 of	 our
committee	and	 invoked	all	 the	usual	excuses.…	My	case	seems	to	me	more
convincing	than	any	statistics.”	Minus	one	lung,	he	finally	stopped	smoking.

Viewed	 from	 the	perspective	of	 public	health,	 the	 report	 of	 the	 advisory
committee	 was	 a	 landmark.	 Within	 two	 years,	 Congress	 had	 required
manufacturers	 to	 place	 health	 warnings	 on	 all	 cigarette	 packs.	 In	 1971,
cigarette	 advertisements	 were	 banned	 from	 radio	 and	 television.	 The
percentage	of	US	adults	who	smoke	declined	 from	its	all-time	maximum	of
45	percent	 in	1965	 to	19.3	percent	 in	2010.	The	antismoking	campaign	has
been	 one	 of	 the	 largest	 and	 most	 successful,	 though	 painfully	 slow	 and
incomplete,	public	health	interventions	in	history.	The	committee’s	work	also
provided	a	valuable	template	for	achieving	scientific	consensus	and	served	as
a	 model	 for	 future	 surgeon	 general’s	 reports	 on	 smoking	 and	 many	 other
topics	 in	 the	 years	 to	 come	 (including	 secondhand	 smoke,	which	 became	 a
major	issue	in	the	1980s).

Viewed	from	the	perspective	of	causality,	the	report	was	at	best	a	modest
success.	 It	 clearly	 established	 the	 gravity	 of	 causal	 questions	 and	 that	 data
alone	 could	 not	 answer	 them.	 But	 as	 a	 roadmap	 for	 future	 discovery,	 its
guidelines	 were	 uncertain	 and	 flimsy.	 Hill’s	 criteria	 are	 best	 read	 as	 a
historical	document,	summarizing	the	types	of	evidence	that	had	emerged	in
the	1950s,	and	ultimately	convinced	the	medical	community.	But	as	a	guide	to
future	research,	they	are	inadequate.	For	all	but	the	broadest	causal	questions,
we	 need	 a	 more	 precise	 instrument.	 In	 retrospect,	 Cornfield’s	 inequality,
which	planted	the	seeds	of	sensitivity	analysis,	was	a	step	in	that	direction.

SMOKING	FOR	NEWBORNS



Even	 after	 the	 smoking	 and	 cancer	 debate	 died	 down,	 one	 major	 paradox
lingered.	 In	 the	 mid-1960s,	 Jacob	 Yerushalmy	 pointed	 out	 that	 a	 mother’s
smoking	during	pregnancy	seemed	to	benefit	the	health	of	her	newborn	baby,
if	 the	baby	happened	 to	be	born	underweight.	This	puzzle,	 called	 the	birth-
weight	 paradox,	 flew	 in	 the	 face	 of	 the	 emerging	medical	 consensus	 about
smoking	 and	 was	 not	 satisfactorily	 explained	 until	 2006—more	 than	 forty
years	after	Yerushalmy’s	original	paper.	I	am	absolutely	convinced	it	took	so
long	because	the	language	of	causality	was	not	available	from	1960	to	1990.

In	 1959,	Yerushalmy	 had	 launched	 a	 long-term	 public	 health	 study	 that
collected	 pre-	 and	 postnatal	 data	 on	 more	 than	 15,000	 children	 in	 the	 San
Francisco	 Bay	 Area.	 The	 data	 included	 information	 on	 mothers’	 smoking
habits,	as	well	as	 the	birth	weights	and	mortality	rates	of	 their	babies	 in	 the
first	month	of	life.

Several	 studies	 had	 already	 shown	 that	 the	 babies	 of	 smoking	 mothers
weighed	 less	 at	birth	on	average	 than	 the	babies	of	nonsmokers,	 and	 it	was
natural	 to	 suppose	 that	 this	 would	 translate	 to	 poorer	 survival.	 Indeed,	 a
nationwide	 study	 of	 low-birth-weight	 infants	 (defined	 as	 those	 who	 weigh
less	than	5.5	pounds	at	birth)	had	shown	that	their	death	rate	was	more	than
twenty	 times	 higher	 than	 that	 of	 normal-birth-weight	 infants.	 Thus,
epidemiologists	posited	a	chain	of	causes	and	effects:	Smoking	 	Low	Birth
Weight	 	Mortality.

What	Yerushalmy	found	 in	 the	data	was	unexpected	even	 to	him.	 It	was
true	 that	 the	 babies	 of	 smokers	 were	 lighter	 on	 average	 than	 the	 babies	 of
nonsmokers	 (by	 seven	 ounces).	 However,	 the	 low-birth-weight	 babies	 of
smoking	mothers	had	a	better	survival	rate	than	those	of	nonsmokers.	It	was
as	if	the	mother’s	smoking	actually	had	a	protective	effect.

If	 Fisher	 had	 discovered	 something	 like	 this,	 he	 probably	 would	 have
loudly	 proclaimed	 it	 as	 one	 of	 the	 benefits	 of	 smoking.	Yerushalmy,	 to	 his
credit,	did	not.	He	wrote,	much	more	cautiously,	“These	paradoxical	findings
raise	doubts	and	argue	against	 the	proposition	that	cigarette	smoking	acts	as
an	 exogenous	 factor	 which	 interferes	 with	 intrauterine	 development	 of	 the
fetus.”	In	short,	there	is	no	causal	path	from	Smoking	to	Mortality.

Modern	epidemiologists	believe	that	Yerushalmy	was	wrong.	Most	believe
that	 smoking	 does	 increase	 neonatal	 mortality—for	 example,	 because	 it
interferes	with	oxygen	transfer	across	the	placenta.	But	how	can	we	reconcile
this	hypothesis	with	the	data?

Statisticians	 and	 epidemiologists	 insisted	 on	 analyzing	 the	 paradox	 in



probabilistic	terms	and	seeing	it	as	an	anomaly	peculiar	to	birth	weight.	As	it
turns	 out,	 it	 has	 little	 to	 do	 with	 birth	 weight	 and	 everything	 to	 do	 with
colliders.	When	viewed	in	that	light,	it	is	not	paradoxical	but	instructive.

In	 fact,	 Yerushalmy’s	 data	 were	 completely	 consistent	 with	 the	 model
Smoking	 	Low	Birth	Weight	 	Mortality	once	we	add	a	little	bit	more	to	it.
Smoking	may	be	harmful	in	that	it	contributes	to	low	birth	weight,	but	certain
other	 causes	of	 low	birth	weight,	 such	 as	 serious	or	 life-threatening	genetic
abnormalities,	 are	much	more	harmful.	There	 are	 two	possible	 explanations
for	low	birth	weight	in	one	particular	baby:	it	might	have	a	smoking	mother,
or	 it	might	be	affected	by	one	of	 those	other	causes.	 If	we	 find	out	 that	 the
mother	 is	 a	 smoker,	 this	 explains	 away	 the	 low	 weight	 and	 consequently
reduces	 the	 likelihood	 of	 a	 serious	 birth	 defect.	 But	 if	 the	mother	 does	 not
smoke,	we	have	stronger	evidence	that	the	cause	of	the	low	birth	weight	is	a
birth	defect,	and	the	baby’s	prognosis	becomes	worse.

As	 before,	 a	 causal	 diagram	 makes	 everything	 clearer.	 When	 we
incorporate	 the	 new	 assumptions,	 the	 causal	 diagram	 looks	 like	 Figure	 5.4.
We	can	see	that	the	birth-weight	paradox	is	a	perfect	example	of	collider	bias.
The	collider	is	Birth	Weight.	By	looking	only	at	babies	with	low	birth	weight,
we	are	conditioning	on	that	collider.	This	opens	up	a	back-door	path	between
Smoking	and	Mortality	that	goes	Smoking	 	Birth	Weight	 	Birth	Defect	
Mortality.	This	path	 is	noncausal	because	one	of	 the	arrows	goes	 the	wrong
way.	 Nevertheless,	 it	 induces	 a	 spurious	 correlation	 between	 Smoking	 and
Mortality	and	biases	our	estimate	of	the	actual	(direct)	causal	effect,	Smoking	
	Mortality.	In	fact,	it	biases	the	estimate	to	such	a	large	extent	that	smoking

actually	appears	beneficial.

The	 beauty	 of	 causal	 diagrams	 is	 that	 they	 make	 the	 source	 of	 bias
obvious.	 Lacking	 such	 diagrams,	 epidemiologists	 argued	 about	 the	 paradox
for	forty	years.	In	fact,	they	are	still	discussing	it:	the	October	2014	issue	of
the	 International	 Journal	 of	 Epidemiology	 contains	 several	 articles	 on	 this
topic.	One	of	 them,	by	Tyler	VanderWeele	of	Harvard,	nails	 the	explanation
perfectly	and	contains	a	diagram	just	like	the	one	below.

FIGURE	5.4.	Causal	diagram	for	the	birth-weight	paradox.



Of	course,	this	diagram	is	likely	too	simple	to	capture	the	full	story	behind
smoking,	birth	weight,	and	infant	mortality.	However,	the	principle	of	collider
bias	 is	 robust.	 In	 this	 case	 the	 bias	 was	 detected	 because	 the	 apparent
phenomenon	 was	 too	 implausible,	 but	 just	 imagine	 how	 many	 cases	 of
collider	bias	go	undetected	because	the	bias	does	not	conflict	with	theory.

PASSIONATE	DEBATES:	SCIENCE	VS.	CULTURE

After	 I	began	work	on	 this	chapter,	 I	had	occasion	 to	contact	Allen	Wilcox,
the	epidemiologist	probably	most	identified	with	this	paradox.	He	has	asked	a
very	inconvenient	question	about	the	diagram	in	Figure	5.4:	How	do	we	know
that	 low	 birth	 weight	 is	 actually	 a	 direct	 cause	 of	 mortality?	 In	 fact,	 he
believes	that	doctors	have	misinterpreted	low	birth	weight	all	along.	Because
it	is	strongly	associated	with	infant	mortality,	doctors	have	interpreted	it	as	a
cause.	 In	 fact,	 that	 association	 could	 be	 due	 entirely	 to	 confounders
(represented	 by	 “Birth	 Defect”	 in	 Figure	 5.4,	 though	 Wilcox	 is	 not	 so
specific).

Two	points	are	worth	making	about	Wilcox’s	argument.	First,	even	if	we
delete	 the	 arrow	 Birth	Weight	 	Mortality,	 the	 collider	 remains.	 Thus	 the
causal	 diagram	 continues	 to	 account	 for	 the	 birth-weight	 paradox
successfully.	Second,	the	causal	variable	that	Wilcox	has	studied	the	most	is
not	smoking	but	race.	And	race	still	incites	passionate	debate	in	our	society.

In	 fact,	 the	 same	 birth-weight	 paradox	 is	 observed	 in	 children	 of	 black
mothers	 as	 in	 children	of	 smokers.	Black	women	give	 birth	 to	 underweight
babies	 more	 often	 than	 white	 women	 do,	 and	 their	 babies	 have	 a	 higher
mortality	 rate.	 Yet	 their	 low-birth-weight	 babies	 have	 a	 better	 survival	 rate
than	 the	 low-birth-weight	 babies	 of	 white	 women.	 Now	 what	 conclusions
should	we	draw?	We	can	tell	a	pregnant	smoker	that	she	would	help	her	baby
by	stopping	smoking.	But	we	can’t	tell	a	pregnant	black	woman	to	stop	being
black.

Instead,	we	 should	 address	 the	 societal	 issues	 that	 cause	 the	 children	 of
black	 mothers	 to	 have	 a	 higher	 mortality	 rate.	 This	 is	 surely	 not	 a
controversial	statement.	But	what	causes	should	we	address,	and	how	should
we	measure	our	progress?	For	better	or	for	worse,	many	advocates	for	racial
justice	have	assumed	birth	weight	as	an	intermediate	step	in	the	chain	Race	
Birth	Weight	 	Mortality.	Not	only	 that,	 they	have	 taken	birth	weight	 as	 a
proxy	 for	 infant	 mortality,	 assuming	 that	 improvements	 in	 the	 one	 will
automatically	lead	to	improvements	in	the	other.	It’s	easy	to	understand	why



they	did	 this.	Measurements	of	average	birth	weights	are	easier	 to	come	by
than	measurements	of	infant	mortality.

Now	imagine	what	happens	when	someone	like	Wilcox	comes	along	and
asserts	 that	 low	birth	weight	by	 itself	 is	not	a	medical	condition	and	has	no
causal	 relation	 to	 infant	mortality.	 It	upsets	 the	entire	applecart.	Wilcox	was
accused	of	racism	when	he	first	suggested	this	idea	back	in	the	1970s,	and	he
didn’t	 dare	 to	 publish	 it	 until	 2001.	 Even	 then,	 two	 commentaries
accompanied	his	article,	and	one	of	 them	brought	up	 the	 race	 issue:	“In	 the
context	 of	 a	 society	 whose	 dominant	 elements	 justify	 their	 positions	 by
arguing	the	genetic	inferiority	of	those	they	dominate,	it	is	hard	to	be	neutral,”
wrote	Richard	David	of	Cook	County	Hospital	in	Chicago.	“In	the	pursuit	of
‘pure	science’	a	well-meaning	investigator	may	be	perceived	as—and	may	be
—aiding	and	abetting	a	social	order	he	abhors.”

This	 harsh	 accusation,	 conceived	 out	 of	 the	 noblest	 of	 motivations,	 is
surely	 not	 the	 first	 instance	 in	 which	 a	 scientist	 has	 been	 reprimanded	 for
elucidating	truths	that	might	have	adverse	social	consequences.	The	Vatican’s
objections	 to	 Galileo’s	 ideas	 surely	 arose	 out	 of	 genuine	 concerns	 for	 the
social	 order	 of	 the	 time.	 The	 same	 can	 be	 said	 about	 Charles	 Darwin’s
evolution	 and	 Francis	 Galton’s	 eugenics.	 However,	 the	 cultural	 shocks	 that
emanate	 from	 new	 scientific	 findings	 are	 eventually	 settled	 by	 cultural
realignments	 that	 accommodate	 those	 findings—not	 by	 concealment.	 A
prerequisite	 for	 this	 realignment	 is	 that	 we	 sort	 out	 the	 science	 from	 the
culture	before	opinions	become	inflamed.	Fortunately,	the	language	of	causal
diagrams	now	gives	us	a	way	to	be	dispassionate	about	causes	and	effects	not
only	when	it	is	easy	but	also	when	it	is	hard.



The	“Monty	Hall	paradox,”	an	enduring	and	for	many	people	infuriating	puzzle,
highlights	how	our	brains	can	be	fooled	by	probabilistic	reasoning	when	causal

reasoning	should	apply.	(Source:	Drawing	by	Maayan	Harel.)
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PARADOXES	GALORE!

He	who	confronts	the	paradoxical	exposes	himself	to	reality.

—FRIEDRICH	DÜRRENMATT	(1962)

THE	 birth-weight	 paradox,	 with	 which	 we	 ended	 Chapter	 5,	 is
representative	 of	 a	 surprisingly	 large	 class	 of	 paradoxes	 that	 reflect	 the
tensions	between	 causation	 and	 association.	The	 tension	 starts	 because	 they
stand	on	two	different	rungs	of	the	Ladder	of	Causation	and	is	aggravated	by
the	fact	that	human	intuition	operates	under	the	logic	of	causation,	while	data
conform	 to	 the	 logic	of	probabilities	 and	proportions.	Paradoxes	arise	when
we	misapply	the	rules	we	have	learned	in	one	realm	to	the	other.

We	are	going	to	devote	a	chapter	 to	some	of	 the	most	baffling	and	well-
known	paradoxes	in	probability	and	statistics	because,	first	of	all,	they’re	fun.
If	 you	 haven’t	 seen	 the	Monty	Hall	 and	Simpson’s	 paradoxes	 before,	 I	 can
promise	that	they	will	give	your	brain	a	workout.	And	even	if	you	think	you
know	all	 about	 them,	 I	 think	 that	 you	will	 enjoy	viewing	 them	 through	 the
lens	of	causality,	which	makes	everything	look	quite	a	bit	different.

However,	we	 study	 paradoxes	 not	 just	 because	 they	 are	 fun	 and	 games.
Like	optical	illusions,	they	also	reveal	the	way	the	brain	works,	the	shortcuts
it	takes,	and	the	things	it	finds	conflicting.	Causal	paradoxes	shine	a	spotlight
onto	 patterns	 of	 intuitive	 causal	 reasoning	 that	 clash	 with	 the	 logic	 of
probability	and	statistics.	To	 the	extent	 that	 statisticians	have	struggled	with
them—and	we’ll	see	that	they	whiffed	rather	badly—it’s	a	warning	sign	that
something	might	be	amiss	with	viewing	the	world	without	a	causal	lens.



THE	PERPLEXING	MONTY	HALL	PROBLEM

In	the	late	1980s,	a	writer	named	Marilyn	vos	Savant	started	a	regular	column
in	Parade	magazine,	a	weekly	supplement	to	the	Sunday	newspaper	in	many
US	cities.	Her	column,	“Ask	Marilyn,”	continues	to	this	day	and	features	her
answers	to	various	puzzles,	brainteasers,	and	scientific	questions	submitted	by
readers.	 The	 magazine	 billed	 her	 as	 “the	 world’s	 smartest	 woman,”	 which
undoubtedly	motivated	readers	to	come	up	with	a	question	that	would	stump
her.

Of	all	 the	questions	she	ever	answered,	none	created	a	greater	furor	 than
this	one,	which	appeared	in	a	column	in	September	1990:	“Suppose	you’re	on
a	game	show,	and	you’re	given	the	choice	of	three	doors.	Behind	one	door	is	a
car,	 behind	 the	 others,	 goats.	 You	 pick	 a	 door,	 say	 #1,	 and	 the	 host,	 who
knows	what’s	behind	the	doors,	opens	another	door,	say	#3,	which	has	a	goat.
He	 says	 to	 you,	 ‘Do	 you	want	 to	 pick	 door	 #2?’	 Is	 it	 to	 your	 advantage	 to
switch	your	choice	of	doors?”

For	 American	 readers,	 the	 question	 was	 obviously	 based	 on	 a	 popular
televised	game	show	called	Let’s	Make	a	Deal,	whose	host,	Monty	Hall,	used
to	play	precisely	this	sort	of	mind	game	with	the	contestants.	In	her	answer,
vos	 Savant	 argued	 that	 contestants	 should	 switch	 doors.	 By	 not	 switching,
they	 would	 have	 only	 a	 one-in-three	 probability	 of	 winning;	 by	 switching,
they	would	double	their	chances	to	two	in	three.

Even	the	smartest	woman	in	the	world	could	never	have	anticipated	what
happened	 next.	 Over	 the	 next	 few	months,	 she	 received	 more	 than	 10,000
letters	 from	 readers,	most	 of	 them	disagreeing	with	 her,	 and	many	 of	 them
from	people	who	claimed	to	have	PhDs	in	mathematics	or	statistics.	A	small
sample	of	the	comments	from	academics	includes	“You	blew	it,	and	you	blew
it	 big!”	 (Scott	 Smith,	 PhD);	 “May	 I	 suggest	 that	 you	 obtain	 and	 refer	 to	 a
standard	 textbook	on	probability	before	you	try	 to	answer	a	question	of	 this
type	again?”	(Charles	Reid,	PhD);	“You	blew	it!”	 (Robert	Sachs,	PhD);	and
“You	 are	 utterly	 incorrect”	 (Ray	Bobo,	 PhD).	 In	 general,	 the	 critics	 argued
that	it	shouldn’t	matter	whether	you	switch	doors	or	not—there	are	only	two
doors	left	in	the	game,	and	you	have	chosen	your	door	completely	at	random,
so	the	probability	that	the	car	is	behind	your	door	must	be	one-half	either	way.

Who	was	right?	Who	was	wrong?	And	why	does	the	problem	incite	such
passion?	All	three	questions	deserve	closer	examination.

Let’s	take	a	look	first	at	how	vos	Savant	solved	the	puzzle.	Her	solution	is
actually	 astounding	 in	 its	 simplicity	 and	 more	 compelling	 than	 any	 I	 have



seen	 in	 many	 textbooks.	 She	 made	 a	 list	 (Table	 6.1)	 of	 the	 three	 possible
arrangements	 of	 doors	 and	 goats,	 along	 with	 the	 corresponding	 outcomes
under	 the	“Switch”	 strategy	and	 the	“Stay”	 strategy.	All	 three	cases	assume
that	 you	 picked	 Door	 1.	 Because	 all	 three	 possibilities	 listed	 are	 (initially)
equally	 likely,	 the	 probability	 of	winning	 if	 you	 switch	 doors	 is	 two-thirds,
and	 the	 probability	 of	 winning	 if	 you	 stay	 with	 Door	 1	 is	 only	 one-third.
Notice	that	vos	Savant’s	table	does	not	explicitly	state	which	door	was	opened
by	the	host.	That	information	is	implicitly	embedded	in	columns	4	and	5.	For
example,	in	the	second	row,	we	kept	in	mind	that	the	host	must	open	Door	3;
therefore	switching	will	land	you	on	Door	2,	a	win.	Similarly,	in	the	first	row,
the	 door	 opened	 could	 be	 either	 Door	 2	 or	 Door	 3,	 but	 column	 4	 states
correctly	that	you	lose	in	either	case	if	you	switch.

Even	today,	many	people	seeing	the	puzzle	for	the	first	time	find	the	result
hard	 to	 believe.	Why?	What	 intuitive	 nerve	 is	 jangled?	 There	 are	 probably
10,000	different	reasons,	one	for	each	reader,	but	I	think	the	most	compelling
argument	is	this:	vos	Savant’s	solution	seems	to	force	us	to	believe	in	mental
telepathy.	 If	 I	 should	 switch	no	matter	what	 door	 I	 originally	 chose,	 then	 it
means	 that	 the	 producers	 somehow	 read	 my	 mind.	 How	 else	 could	 they
position	 the	 car	 so	 that	 it	 is	 more	 likely	 to	 be	 behind	 the	 door	 I	 did	 not
choose?

TABLE	6.1.	The	three	possible	arrangements	of	doors	and	goats	in	Let’s	Make
a	Deal,	showing	that	switching	doors	is	twice	as	attractive	as	not.

The	 key	 element	 in	 resolving	 this	 paradox	 is	 that	 we	 need	 to	 take	 into
account	not	only	the	data	(i.e.,	the	fact	that	the	host	opened	a	particular	door)
but	also	 the	data-generating	process—in	other	words,	 the	rules	of	 the	game.
They	tell	us	something	about	the	data	that	could	have	been	but	has	not	been
observed.	 No	 wonder	 statisticians	 in	 particular	 found	 this	 puzzle	 hard	 to
comprehend.	 They	 are	 accustomed	 to,	 as	 R.	 A.	 Fisher	 (1922)	 put	 it,	 “the
reduction	of	data”	and	ignoring	the	data-generating	process.

For	starters,	let’s	try	changing	the	rules	of	the	game	a	bit	and	see	how	that
affects	our	conclusion.	Imagine	an	alternative	game	show,	called	Let’s	Fake	a
Deal,	where	Monty	Hall	opens	one	of	 the	 two	doors	you	didn’t	choose,	but



his	 choice	 is	 completely	 random.	 In	particular,	 he	might	 open	 the	door	 that
has	a	car	behind	it.	Tough	luck!

As	before,	we	will	assume	that	you	chose	Door	1	to	begin	the	game,	and
the	host,	again,	opens	Door	3,	 revealing	a	goat,	and	offers	you	an	option	 to
switch.	 Should	 you?	We	will	 show	 that,	 under	 the	 new	 rules,	 although	 the
scenario	is	identical,	you	will	not	gain	by	switching.

To	do	that,	we	make	a	table	like	the	previous	one,	taking	into	account	that
there	are	two	random	and	independent	events—the	location	of	the	car	(three
possibilities)	 and	Monty	Hall’s	 choice	of	 a	 door	 to	open	 (two	possibilities).
Thus	the	table	needs	to	have	six	rows,	each	of	which	is	equally	likely	because
the	events	are	independent.

Now	what	happens	if	Monty	Hall	opens	Door	3	and	reveals	a	goat?	This
gives	us	some	significant	information:	we	must	be	in	row	2	or	4	of	the	table.
Focusing	 just	on	 lines	2	and	4,	we	can	see	 that	 the	strategy	of	switching	no
longer	offers	us	any	advantage;	we	have	a	one-in-two	probability	of	winning
either	way.	 So	 in	 the	 game	Let’s	 Fake	 a	Deal,	 all	 of	Marilyn	 vos	 Savant’s
critics	would	be	right!	Yet	the	data	are	the	same	in	both	games.	The	lesson	is
quite	simple:	the	way	that	we	obtain	information	is	no	less	important	than	the
information	itself.

TABLE	6.2.	Let’s	Fake	a	Deal	possibilities.

Let’s	 use	 our	 favorite	 trick	 and	 draw	 a	 causal	 diagram,	 which	 should
illustrate	 immediately	 how	 the	 two	 games	 differ.	 First,	 Figure	 6.1	 shows	 a
diagram	for	 the	actual	Let’s	Make	a	Deal	 game,	 in	which	Monty	Hall	must
open	 a	 door	 that	 does	 not	 have	 a	 car	 behind	 it.	 The	 absence	 of	 an	 arrow
between	Your	Door	and	Location	of	Car	means	that	your	choice	of	a	door	and
the	producers’	choice	of	where	to	put	the	car	are	independent.	This	means	we
are	explicitly	ruling	out	the	possibility	that	the	producers	can	read	your	mind
(or	that	you	can	read	theirs!).	Even	more	important	are	the	two	arrows	that	are



present	in	the	diagram.	They	show	that	Door	Opened	is	affected	by	both	your
choice	 and	 the	 producers’	 choice.	 That	 is	 because	Monty	Hall	must	 pick	 a
door	that	is	different	both	from	both	Your	Door	and	Location	of	Car;	he	has	to
take	both	factors	into	account.

FIGURE	6.1.	Causal	diagram	for	Let’s	Make	a	Deal.

As	 you	 can	 see	 from	 Figure	 6.1,	 Door	 Opened	 is	 a	 collider.	 Once	 we
obtain	 information	on	 this	variable,	 all	our	probabilities	become	conditional
on	this	information.	But	when	we	condition	on	a	collider,	we	create	a	spurious
dependence	 between	 its	 parents.	 The	 dependence	 is	 borne	 out	 in	 the
probabilities:	 if	 you	 chose	Door	 1,	 the	 car	 location	 is	 twice	 as	 likely	 to	 be
behind	Door	2	as	Door	1;	 if	you	chose	Door	2,	 the	car	 location	 is	 twice	as
likely	to	be	behind	Door	1.

It	 is	 a	 bizarre	 dependence	 for	 sure,	 one	 of	 a	 type	 that	 most	 of	 us	 are
unaccustomed	 to.	 It	 is	 a	 dependence	 that	 has	 no	 cause.	 It	 does	 not	 involve
physical	 communication	 between	 the	 producers	 and	 us.	 It	 does	 not	 involve
mental	telepathy.	It	 is	purely	an	artifact	of	Bayesian	conditioning:	a	magical
transfer	of	 information	without	causality.	Our	minds	 rebel	at	 this	possibility
because	 from	earliest	 infancy,	we	have	 learned	 to	associate	 correlation	with
causation.	If	a	car	behind	us	takes	all	the	same	turns	that	we	do,	we	first	think
it	 is	 following	us	 (causation!).	We	next	 think	 that	we	are	going	 to	 the	same
place	(i.e.,	there	is	a	common	cause	behind	each	of	our	turns).	But	causeless
correlation	violates	our	common	sense.	Thus,	the	Monty	Hall	paradox	is	just
like	an	optical	illusion	or	a	magic	trick:	it	uses	our	own	cognitive	machinery
to	deceive	us.

Why	 do	 I	 say	 that	Monty	 Hall’s	 opening	 of	 Door	 3	 was	 a	 “transfer	 of
information”?	 It	 didn’t,	 after	 all,	 provide	 any	 evidence	 about	 whether	 your
initial	choice	of	Door	1	was	correct.	You	knew	in	advance	that	he	was	going
to	open	a	door	that	hid	a	goat,	and	so	he	did.	No	one	should	ask	you	to	change
your	beliefs	if	you	witness	the	inevitable.	So	how	come	your	belief	in	Door	2
has	gone	up	from	one-third	to	two-thirds?

The	answer	is	that	Monty	could	not	open	Door	1	after	you	chose	it—but
he	could	have	opened	Door	2.	The	fact	 that	he	did	not	makes	it	more	likely
that	he	opened	Door	3	because	he	was	forced	to.	Thus	there	is	more	evidence
than	before	that	the	car	is	behind	Door	2.	This	is	a	general	theme	of	Bayesian



analysis:	any	hypothesis	that	has	survived	some	test	that	threatens	its	validity
becomes	more	likely.	The	greater	the	threat,	the	more	likely	it	becomes	after
surviving.	Door	2	was	vulnerable	to	refutation	(i.e.,	Monty	could	have	opened
it),	 but	Door	1	was	not.	Therefore,	Door	2	becomes	a	more	 likely	 location,
while	Door	1	does	not.	The	probability	that	the	car	is	behind	Door	1	remains
one	in	three.

Now,	for	comparison,	Figure	6.2	shows	the	causal	diagram	for	Let’s	Fake
a	Deal,	 the	game	in	which	Monty	Hall	chooses	a	door	that	is	different	from
yours	 but	 otherwise	 chosen	 at	 random.	 This	 diagram	 still	 has	 an	 arrow
pointing	from	Your	Door	 to	Door	Opened	because	he	has	 to	make	sure	 that
his	door	is	different	from	yours.	However,	the	arrow	from	Location	of	Car	to
Door	Opened	would	be	deleted	because	he	no	longer	cares	where	the	car	is.	In
this	 diagram,	 conditioning	 on	 Door	 Opened	 has	 absolutely	 no	 effect:	 Your
Door	 and	Location	 of	Car	were	 independent	 to	 start	with,	 and	 they	 remain
independent	 after	we	 see	 the	 contents	 of	Monty’s	 door.	 So	 in	Let’s	 Fake	 a
Deal,	 the	 car	 is	 just	 as	 likely	 to	 be	 behind	 your	 door	 as	 the	 other	 door,	 as
observed	in	Table	6.2.

FIGURE	6.2.	Causal	diagram	for	Let’s	Fake	a	Deal.

From	the	Bayesian	point	of	view,	the	difference	between	the	two	games	is
that	in	Let’s	Fake	a	Deal,	Door	1	is	vulnerable	to	refutation.	Monty	Hall	could
have	opened	Door	3	and	revealed	the	car,	which	would	have	proven	that	your
door	 choice	 was	 wrong.	 Because	 your	 door	 and	 Door	 2	 were	 equally
vulnerable	to	refutation,	they	still	have	equal	probability.

Although	 purely	 qualitative,	 this	 analysis	 could	 be	made	 quantitative	 by
using	 Bayes’s	 rule	 or	 by	 thinking	 of	 the	 diagrams	 as	 a	 simple	 Bayesian
network.	Doing	so	places	 this	problem	in	a	unifying	framework	that	we	use
for	 thinking	 about	 other	 problems.	 We	 don’t	 have	 to	 invent	 a	 method	 for
solving	the	puzzle;	the	belief	propagation	scheme	described	in	Chapter	3	will
deliver	the	correct	answer:	that	is,	P(Door	2)	=	2/3	for	Let’s	Make	a	Deal,	and
P(Door	2)	=	1/2	for	Let’s	Fake	a	Deal.

Notice	 that	 I	 have	 really	 given	 two	 explanations	 of	 the	 Monty	 Hall
paradox.	 The	 first	 one	 uses	 causal	 reasoning	 to	 explain	 why	 we	 observe	 a
spurious	 dependence	 between	 Your	 Door	 and	 Location	 of	 Car;	 the	 second
uses	Bayesian	reasoning	to	explain	why	the	probability	of	Door	2	goes	up	in



Let’s	 Make	 a	 Deal.	 Both	 explanations	 are	 valuable.	 The	 Bayesian	 one
accounts	for	the	phenomenon	but	does	not	really	explain	why	we	perceive	it
as	 so	 paradoxical.	 In	 my	 opinion,	 a	 true	 resolution	 of	 a	 paradox	 should
explain	why	we	see	it	as	a	paradox	in	the	first	place.	Why	did	the	people	who
read	her	column	believe	so	strongly	that	vos	Savant	was	wrong?	It	wasn’t	just
the	 know-it-alls.	 Paul	 Erdos,	 one	 of	 the	 most	 brilliant	 mathematicians	 of
modern	 times,	 likewise	 could	 not	 believe	 the	 solution	 until	 a	 computer
simulation	showed	him	that	switching	is	advantageous.	What	deep	flaw	in	our
intuitive	view	of	the	world	does	this	reveal?

“Our	brains	are	just	not	wired	to	do	probability	problems	very	well,	so	I’m
not	 surprised	 there	 were	 mistakes,”	 said	 Persi	 Diaconis,	 a	 statistician	 at
Stanford	University,	in	a	1991	interview	with	the	New	York	Times.	True,	but
there’s	more	 to	 it.	Our	brains	 are	not	wired	 to	do	probability	 problems,	 but
they	 are	 wired	 to	 do	 causal	 problems.	 And	 this	 causal	 wiring	 produces
systematic	 probabilistic	mistakes,	 like	 optical	 illusions.	Because	 there	 is	 no
causal	 connection	between	My	Door	 and	Location	of	Car,	 either	directly	or
through	a	common	cause,	we	find	 it	utterly	 incomprehensible	 that	 there	 is	a
probabilistic	 association.	 Our	 brains	 are	 not	 prepared	 to	 accept	 causeless
correlations,	and	we	need	special	training—through	examples	like	the	Monty
Hall	paradox	or	the	ones	discussed	in	Chapter	3—to	identify	situations	where
they	can	arise.	Once	we	have	“rewired	our	brains”	to	recognize	colliders,	the
paradox	ceases	to	be	confusing.

MORE	COLLIDER	BIAS:	BERKSON’S	PARADOX

In	1946,	Joseph	Berkson,	a	biostatistician	at	 the	Mayo	Clinic,	pointed	out	a
peculiarity	 of	 observational	 studies	 conducted	 in	 a	 hospital	 setting:	 even	 if
two	diseases	have	no	relation	to	each	other	in	the	general	population,	they	can
appear	to	be	associated	among	patients	in	a	hospital.

To	 understand	 Berkson’s	 observation,	 let’s	 start	 with	 a	 causal	 diagram
(Figure	6.3).	 It’s	 also	 helpful	 to	 think	of	 a	 very	 extreme	possibility:	 neither
Disease	1	nor	Disease	2	is	ordinarily	severe	enough	to	cause	hospitalization,
but	the	combination	is.	In	this	case,	we	would	expect	Disease	1	to	be	highly
correlated	with	Disease	2	in	the	hospitalized	population.



FIGURE	6.3.	Causal	diagram	for	Berkson’s	paradox.

By	performing	a	study	on	patients	who	are	hospitalized,	we	are	controlling
for	Hospitalization.	As	we	know,	conditioning	on	a	collider	creates	a	spurious
association	 between	 Disease	 1	 and	 Disease	 2.	 In	 many	 of	 our	 previous
examples	the	association	was	negative	because	of	the	explain-away	effect,	but
here	it	is	positive	because	both	diseases	have	to	be	present	for	hospitalization
(not	just	one).

However,	 for	 a	 long	 time	 epidemiologists	 refused	 to	 believe	 in	 this
possibility.	 They	 still	 didn’t	 believe	 it	 in	 1979,	 when	 David	 Sackett	 of
McMaster	University,	an	expert	on	all	sorts	of	statistical	bias,	provided	strong
evidence	 that	Berkson’s	paradox	 is	 real.	 In	one	example	 (see	Table	6.3),	 he
studied	 two	 groups	 of	 diseases:	 respiratory	 and	 bone.	About	 7.5	 percent	 of
people	 in	 the	general	population	have	a	bone	disease,	and	 this	percentage	 is
independent	 of	 whether	 they	 have	 respiratory	 disease.	 But	 for	 hospitalized
people	with	 respiratory	 disease,	 the	 frequency	 of	 bone	 disease	 jumps	 to	 25
percent!	 Sackett	 called	 this	 phenomenon	 “admission	 rate	 bias”	 or	 “Berkson
bias.”

TABLE	6.3.	Sackett’s	data	illustrating	Berkson’s	paradox.

Sackett	admits	that	we	cannot	definitively	attribute	this	effect	to	Berkson
bias	because	there	could	also	be	confounding	factors.	The	debate	is,	to	some
extent,	 ongoing.	 However,	 unlike	 in	 1946	 and	 1979,	 researchers	 in
epidemiology	 now	 understand	 causal	 diagrams	 and	what	 biases	 they	 entail.
The	discussion	has	now	moved	on	to	finer	points	of	how	large	the	bias	can	be
and	 whether	 it	 is	 large	 enough	 to	 observe	 in	 causal	 diagrams	 with	 more
variables.	This	is	progress!

Collider-induced	correlations	are	not	new.	They	have	been	found	in	work
dating	 back	 to	 a	 1911	 study	 by	 the	 English	 economist	 Arthur	 Cecil	 Pigou,
who	compared	children	of	alcoholic	and	nonalcoholic	parents.	They	are	also
found,	though	not	by	that	name,	in	the	work	of	Barbara	Burks	(1926),	Herbert
Simon	 (1954),	 and	of	course	Berkson.	They	are	also	not	as	esoteric	as	 they



may	 seem	 from	 my	 examples.	 Try	 this	 experiment:	 Flip	 two	 coins
simultaneously	 one	hundred	 times	 and	write	 down	 the	 results	 only	when	 at
least	one	of	them	comes	up	heads.	Looking	at	your	table,	which	will	probably
contain	roughly	seventy-five	entries,	you	will	see	that	the	outcomes	of	the	two
simultaneous	coin	flips	are	not	 independent.	Every	time	Coin	1	landed	tails,
Coin	 2	 landed	 heads.	 How	 is	 this	 possible?	 Did	 the	 coins	 somehow
communicate	 with	 each	 other	 at	 light	 speed?	 Of	 course	 not.	 In	 reality	 you
conditioned	on	a	collider	by	censoring	all	the	tails-tails	outcomes.

In	The	Direction	 of	 Time,	 published	 posthumously	 in	 1956,	 philosopher
Hans	 Reichenbach	 made	 a	 daring	 conjecture	 called	 the	 “common	 cause
principle.”	 Rebutting	 the	 adage	 “Correlation	 does	 not	 imply	 causation,”
Reichenbach	 posited	 a	 much	 stronger	 idea:	 “No	 correlation	 without
causation.”	 He	 meant	 that	 a	 correlation	 between	 two	 variables,	 X	 and	 Y,
cannot	come	about	by	accident.	Either	one	of	the	variables	causes	the	other,
or	a	third	variable,	say	Z,	precedes	and	causes	them	both.

Our	simple	coin-flip	experiment	proves	that	Reichenbach’s	dictum	was	too
strong,	because	 it	neglects	 to	account	for	 the	process	by	which	observations
are	selected.	There	was	no	common	cause	of	 the	outcome	of	 the	 two	coins,
and	 neither	 coin	 communicated	 its	 result	 to	 the	 other.	 Nevertheless,	 the
outcomes	on	our	 list	were	correlated.	Reichenbach’s	error	was	his	 failure	 to
consider	 collider	 structures—the	 structure	 behind	 the	 data	 selection.	 The
mistake	was	 particularly	 illuminating	 because	 it	 pinpoints	 the	 exact	 flaw	 in
the	wiring	of	our	brains.	We	live	our	lives	as	if	the	common	cause	principle
were	 true.	Whenever	we	 see	 patterns,	we	 look	 for	 a	 causal	 explanation.	 In
fact,	 we	 hunger	 for	 an	 explanation,	 in	 terms	 of	 stable	 mechanisms	 that	 lie
outside	the	data.	The	most	satisfying	kind	of	explanation	is	direct	causation:	X
causes	Y.	When	 that	 fails,	 finding	a	 common	cause	of	X	and	Y	will	 usually
satisfy	 us.	 By	 comparison,	 colliders	 are	 too	 ethereal	 to	 satisfy	 our	 causal
appetites.	We	still	want	to	know	the	mechanism	through	which	the	two	coins
coordinate	their	behavior.	The	answer	is	a	crushing	disappointment.	They	do
not	communicate	at	all.	The	correlation	we	observe	is,	in	the	purest	and	most
literal	 sense,	 an	 illusion.	Or	perhaps	even	a	delusion:	 that	 is,	 an	 illusion	we
brought	upon	ourselves	by	choosing	which	events	 to	 include	 in	our	data	set
and	 which	 to	 ignore.	 It	 is	 important	 to	 realize	 that	 we	 are	 not	 always
conscious	of	making	this	choice,	and	this	is	one	reason	that	collider	bias	can
so	 easily	 trap	 the	 unwary.	 In	 the	 two-coin	 experiment,	 the	 choice	 was
conscious:	I	told	you	not	to	record	the	trials	with	two	tails.	But	on	plenty	of
occasions	we	aren’t	aware	of	making	the	choice,	or	the	choice	is	made	for	us.
In	 the	 Monty	 Hall	 paradox,	 the	 host	 opens	 the	 door	 for	 us.	 In	 Berkson’s



paradox,	an	unwary	researcher	might	choose	to	study	hospitalized	patients	for
reasons	of	convenience,	without	realizing	that	he	is	biasing	his	study.

The	distorting	prism	of	colliders	 is	 just	as	prevalent	 in	everyday	 life.	As
Jordan	Ellenberg	asks	in	How	Not	to	Be	Wrong,	have	you	ever	noticed	 that,
among	 the	 people	 you	 date,	 the	 attractive	 ones	 tend	 to	 be	 jerks?	 Instead	 of
constructing	elaborate	psychosocial	 theories,	consider	a	simpler	explanation.
Your	 choice	 of	 people	 to	 date	 depends	 on	 two	 factors:	 attractiveness	 and
personality.	You’ll	take	a	chance	on	dating	a	mean	attractive	person	or	a	nice
unattractive	 person,	 and	 certainly	 a	 nice	 attractive	 person,	 but	 not	 a	 mean
unattractive	 person.	 It’s	 the	 same	 as	 the	 two-coin	 example,	 when	 you
censored	 tails-tails	 outcomes.	 This	 creates	 a	 spurious	 negative	 correlation
between	 attractiveness	 and	 personality.	 The	 sad	 truth	 is	 that	 unattractive
people	 are	 just	 as	 mean	 as	 attractive	 people—but	 you’ll	 never	 realize	 it,
because	you’ll	never	date	somebody	who	is	both	mean	and	unattractive.

SIMPSON’S	PARADOX

Now	 that	 we	 have	 shown	 that	 TV	 producers	 don’t	 really	 have	 telepathic
abilities	 and	coins	 cannot	 communicate	with	one	 another,	what	other	myths
can	we	explode?	Let’s	start	with	the	myth	of	the	bad/bad/good,	or	BBG,	drug.

Imagine	 a	 doctor—Dr.	 Simpson,	 we’ll	 call	 him—reading	 in	 his	 office
about	a	promising	new	drug	(Drug	D)	that	seems	to	reduce	the	risk	of	a	heart
attack.	 Excitedly,	 he	 looks	 up	 the	 researchers’	 data	 online.	 His	 excitement
cools	a	little	when	he	looks	at	the	data	on	male	patients	and	notices	that	their
risk	of	a	heart	attack	is	actually	higher	if	they	take	Drug	D.	“Oh	well,	he	says,
“Drug	D	must	be	very	effective	for	women.”

But	 then	 he	 turns	 to	 the	 next	 table,	 and	 his	 disappointment	 turns	 to
bafflement.	“What	is	this?”	Dr.	Simpson	exclaims.	“It	says	here	that	women
who	took	Drug	D	were	also	at	higher	risk	of	a	heart	attack.	I	must	be	losing
my	marbles!	This	drug	seems	to	be	bad	for	women,	bad	for	men,	but	good	for
people.”

Are	you	perplexed	too?	If	so,	you	are	in	good	company.	This	paradox,	first
discovered	 by	 a	 real-life	 statistician	 named	 Edward	 Simpson	 in	 1951,	 has
been	bothering	statisticians	for	more	than	sixty	years—and	it	remains	vexing
to	this	very	day.	Even	in	2016,	as	I	was	writing	this	book,	four	new	articles
(including	 a	 PhD	 dissertation)	 came	 out,	 attempting	 to	 explain	 Simpson’s
paradox	from	four	different	points	of	view.



In	 1983	 Melvin	 Novick	 wrote,	 “The	 apparent	 answer	 is	 that	 when	 we
know	that	the	gender	of	the	patient	is	male	or	when	we	know	that	it	is	female
we	do	not	use	the	treatment,	but	if	the	gender	is	unknown	we	should	use	the
treatment!	Obviously	that	conclusion	is	ridiculous.”	I	completely	agree.	It	 is
ridiculous	 for	 a	 drug	 to	 be	 bad	 for	 men	 and	 bad	 for	 women	 but	 good	 for
people.	So	one	of	these	three	assertions	must	be	wrong.	But	which	one?	And
why?	And	how	is	this	confusion	even	possible?

To	answer	these	questions,	we	of	course	need	to	look	at	the	(fictional)	data
that	puzzled	our	good	Dr.	Simpson	so	much.	The	study	was	observational,	not
randomized,	with	 sixty	men	 and	 sixty	women.	This	means	 that	 the	 patients
themselves	decided	whether	to	take	or	not	to	take	the	drug.	Table	6.4	shows
how	many	of	each	gender	received	Drug	D	and	how	many	were	subsequently
diagnosed	with	heart	attack.

Let	me	emphasize	where	the	paradox	is.	As	you	can	see,	5	percent	(one	in
twenty)	of	the	women	in	the	control	group	later	had	a	heart	attack,	compared
to	7.5	percent	of	the	women	who	took	the	drug.	So	the	drug	is	associated	with
a	higher	 risk	of	heart	 attack	 for	women.	Among	 the	men,	30	percent	 in	 the
control	 group	 had	 a	 heart	 attack,	 compared	 to	 40	 percent	 in	 the	 treatment
group.	So	the	drug	is	associated	with	a	higher	risk	of	heart	attack	among	men.
Dr.	Simpson	was	right.

TABLE	6.4.	Fictitious	data	illustrating	Simpson’s	paradox.

But	now	look	at	 the	 third	 line	of	 the	 table.	Among	the	control	group,	22
percent	had	a	heart	attack,	but	in	the	treatment	group	only	18	percent	did.	So,
if	we	judge	on	the	basis	of	the	bottom	line,	Drug	D	seems	to	decrease	the	risk
of	heart	attack	in	the	population	as	a	whole.	Welcome	to	the	bizarre	world	of
Simpson’s	paradox!

For	 almost	 twenty	 years,	 I	 have	 been	 trying	 to	 convince	 the	 scientific
community	that	the	confusion	over	Simpson’s	paradox	is	a	result	of	incorrect
application	 of	 causal	 principles	 to	 statistical	 proportions.	 If	 we	 use	 causal
notation	 and	 diagrams,	 we	 can	 clearly	 and	 unambiguously	 decide	 whether
Drug	D	prevents	or	causes	heart	attacks.	Fundamentally,	Simpson’s	paradox



is	a	puzzle	about	confounding	and	can	thus	be	resolved	by	the	same	methods
we	used	to	resolve	that	mystery.	Curiously,	three	of	the	four	2016	papers	that
I	mentioned	continue	to	resist	this	solution.

Any	claim	to	resolve	a	paradox	(especially	one	that	is	decades	old)	should
meet	some	basic	criteria.	First,	as	I	said	above	in	connection	with	the	Monty
Hall	 paradox,	 it	 should	 explain	 why	 people	 find	 the	 paradox	 surprising	 or
unbelievable.	 Second,	 it	 should	 identify	 the	 class	 of	 scenarios	 in	which	 the
paradox	can	occur.	Third,	it	should	inform	us	of	scenarios,	if	any,	in	which	the
paradox	cannot	occur.	Finally,	when	the	paradox	does	occur,	and	we	have	to
make	a	choice	between	two	plausible	yet	contradictory	statements,	 it	should
tell	us	which	statement	is	correct.

Let’s	 start	with	 the	question	of	why	Simpson’s	paradox	 is	 surprising.	To
explain	 this,	we	 should	 distinguish	 between	 two	 things:	 Simpson’s	 reversal
and	Simpson’s	paradox.

Simpson’s	reversal	is	a	purely	numerical	fact:	as	seen	in	Table	6.4,	it	 is	a
reversal	 in	 relative	 frequency	of	 a	 particular	 event	 in	 two	or	more	 different
samples	upon	merging	the	samples.	In	our	example,	we	saw	that	3/40	>	1/20
(these	were	 the	 frequencies	of	heart	 attack	among	women	with	and	without
Drug	 D)	 and	 8/20	 >	 12/40	 (the	 frequencies	 among	 men).	 Yet	 when	 we
combined	women	and	men,	 the	 inequality	 reversed	 direction:	 (3	 +	 8)/(40	+
20)	 <	 (1	 +	 12)/(20	 +	 40).	 If	 you	 thought	 such	 a	 reversal	 mathematically
impossible,	 then	 you	 were	 probably	 basing	 your	 reaction	 on	misapplied	 or
misremembered	properties	of	 fractions.	Many	people	seem	to	believe	 that	 if
A/B	>	a/b	and	C/D	>	c/d,	then	it	follows	that	(A	+	C)/(B	+	D)	>	(a	+	c)/(b	+	d).
But	 this	 folk	 wisdom	 is	 simply	 wrong.	 The	 example	 we	 have	 just	 given
refutes	it.

Simpson’s	reversal	can	be	found	in	real-world	data	sets.	For	baseball	fans,
here	is	a	lovely	example	concerning	two	star	baseball	players,	David	Justice
and	Derek	Jeter.	In	1995,	Justice	had	a	higher	batting	average,	.253	to	.250.	In
1996,	Justice	had	a	higher	batting	average	again,	 .321	to	.314.	And	in	1997,
he	had	a	higher	batting	average	than	Jeter	for	the	third	season	in	a	row,	.329	to
.291.	Yet	over	all	three	seasons	combined,	Jeter	had	the	higher	average!	Table
6.5	shows	the	calculations	for	readers	who	would	like	to	check	them.

How	can	one	player	be	a	worse	hitter	 than	 the	other	 in	1995,	1996,	 and
1997	but	better	over	 the	 three-year	period?	This	 reversal	seems	 just	 like	 the
BBG	drug.	In	fact	it	isn’t	possible;	the	problem	is	that	we	have	used	an	overly
simple	word	(“better”)	to	describe	a	complex	averaging	process	over	uneven
seasons.	Notice	that	the	at	bats	(the	denominators)	are	not	distributed	evenly



year	 to	 year.	 Jeter	 had	 very	 few	 at	 bats	 in	 1995,	 so	 his	 rather	 low	 batting
average	 that	year	had	 little	effect	on	his	overall	average.	On	the	other	hand,
Justice	 had	many	more	 at	 bats	 in	 his	 least	 productive	 year,	 1995,	 and	 that
brought	his	overall	batting	average	down.	Once	you	realize	that	“better	hitter”
is	 defined	 not	 by	 an	 actual	 head-to-head	 competition	 but	 by	 a	 weighted
average	 that	 takes	 into	 account	 how	 often	 each	 player	 played,	 I	 think	 the
surprise	starts	to	wane.

TABLE	6.5.	Data	(not	fictitious)	illustrating	Simpson’s	reversal.

There	is	no	question	that	Simpson’s	reversal	is	surprising	to	some	people,
even	baseball	fans.	Every	year	I	have	some	students	who	cannot	believe	it	at
first.	But	 then	 they	 go	 home,	work	 out	 some	 examples	 like	 the	 two	 I	 have
shown	here,	and	come	to	 terms	with	 it.	 It	simply	becomes	part	of	 their	new
and	slightly	deeper	understanding	of	how	numbers	(and	especially	aggregates
of	populations)	work.	I	do	not	call	Simpson’s	reversal	a	paradox	because	it	is,
at	most,	simply	a	matter	of	correcting	a	mistaken	belief	about	the	behavior	of
averages.	A	paradox	is	more	than	that:	it	should	entail	a	conflict	between	two
deeply	held	convictions.

For	professional	 statisticians	who	work	with	numbers	 every	day	of	 their
lives,	 there	 is	 even	 less	 reason	 to	 consider	Simpson’s	 reversal	 a	paradox.	A
simple	arithmetic	 inequality	could	not	possibly	puzzle	and	fascinate	them	to
such	 an	 extent	 that	 they	would	 still	 be	 writing	 articles	 about	 it	 sixty	 years
later.

Now	let’s	go	back	to	our	main	example,	the	paradox	of	the	BBG	drug.	I’ve
explained	 why	 the	 three	 statements	 “bad	 for	 men,”	 “bad	 for	 women,”	 and
“good	for	people,”	when	interpreted	as	an	increase	or	decrease	in	proportions,
are	not	mathematically	contradictory.	Yet	it	may	still	seem	to	you	that	they	are
physically	impossible.	A	drug	can’t	simultaneously	cause	me	and	you	to	have
a	heart	attack	and	at	the	same	time	prevent	us	both	from	having	heart	attacks.
This	 intuition	 is	 universal;	 we	 develop	 it	 as	 two-year-olds,	 long	 before	 we
start	learning	about	numbers	and	fractions.	So	I	think	you	will	be	relieved	to
find	out	that	you	do	not	have	to	abandon	your	intuition.	A	BBG	drug	indeed
does	not	exist	and	will	never	be	invented,	and	we	can	prove	it	mathematically.

The	first	person	to	bring	attention	to	this	intuitively	obvious	principle	was



the	 statistician	 Leonard	 Savage,	 who	 in	 1954	 called	 it	 the	 “sure-thing
principle.”	He	wrote,

A	 businessman	 contemplates	 buying	 a	 certain	 piece	 of	 property.	 He
considers	the	outcome	of	the	next	presidential	election	relevant.	So,	to
clarify	the	matter	to	himself,	he	asks	whether	he	would	buy	if	he	knew
that	 the	Democratic	candidate	were	going	 to	win,	and	decides	 that	he
would.	Similarly,	he	considers	whether	he	would	buy	 if	he	knew	that
the	Republican	 candidate	were	 going	 to	win,	 and	 again	 finds	 that	 he
would.	 Seeing	 that	 he	would	 buy	 in	 either	 event,	 he	 decides	 that	 he
should	buy,	even	though	he	does	not	know	which	event	obtains,	or	will
obtain,	as	we	would	ordinarily	say.	It	is	all	too	seldom	that	a	decision
can	be	arrived	at	on	the	basis	of	this	principle,	but…	I	know	of	no	other
extra-logical	 principle	 governing	 decisions	 that	 finds	 such	 ready
acceptance.

Savage’s	 last	 statement	 is	 particularly	perceptive:	 he	 realizes	 that	 the	 “sure-
thing	principle”	is	extralogical.	In	fact,	when	properly	interpreted	it	 is	based
on	 causal,	 not	 classical,	 logic.	 Also,	 he	 says	 he	 “know[s]	 of	 no	 other…
principle…	that	finds	such	ready	acceptance.”	Obviously	he	has	talked	about
it	with	many	people	and	they	found	the	line	of	reasoning	very	compelling.

To	 connect	 Savage’s	 sure-thing	 principle	 to	 our	 previous	 discussion,
suppose	 that	 the	 choice	 is	 actually	 between	 two	 properties,	A	 and	B.	 If	 the
Democrat	 wins,	 the	 businessman	 has	 a	 5	 percent	 chance	 of	 making	 $1	 on
Property	A	 and	 an	 8	 percent	 chance	 of	 making	 $1	 on	 Property	B.	 So	B	 is
preferred	to	A.	If	the	Republican	wins,	he	has	a	30	percent	chance	of	making
$1	on	Property	A	and	a	40	percent	chance	of	making	$1	on	Property	B.	Again,
B	is	preferred	to	A.	According	to	the	sure-thing	principle,	he	should	definitely
buy	 Property	 B.	 But	 sharp-eyed	 readers	 may	 notice	 that	 the	 numerical
quantities	 are	 the	 same	 as	 in	 the	 Simpson	 story,	 and	 this	may	 alert	 us	 that
buying	Property	B	may	be	too	hasty	a	decision.

In	 fact,	 the	 argument	 above	 has	 a	 glaring	 flaw.	 If	 the	 businessman’s
decision	to	buy	can	change	the	election’s	outcome	(for	example,	if	the	media
watched	his	actions),	then	buying	Property	A	may	be	in	his	best	interest.	The
harm	of	electing	 the	wrong	president	may	outweigh	whatever	 financial	gain
he	might	extract	from	the	deal,	once	a	president	is	elected.

To	 make	 the	 sure-thing	 principle	 valid,	 we	 must	 insist	 that	 the
businessman’s	decision	will	not	affect	the	outcome	of	the	election.	As	long	as
the	 businessman	 is	 sure	 his	 decision	 won’t	 affect	 the	 likelihood	 of	 a
Democratic	 or	 Republican	 victory,	 he	 can	 go	 ahead	 and	 buy	 Property	 B.



Otherwise,	 all	 bets	 are	 off.	Note	 that	 the	missing	 ingredient	 (which	 Savage
neglected	to	state	explicitly)	is	a	causal	assumption.	A	correct	version	of	his
principle	would	read	as	follows:	an	action	that	increases	the	probability	of	a
certain	outcome	assuming	either	that	Event	C	occurred	or	that	Event	C	did	not
occur	 will	 also	 increase	 its	 probability	 if	 we	 don’t	 know	 whether	 C
occurred…	provided	that	the	action	does	not	change	the	probability	of	C.	 In
particular,	 there	 is	 no	 such	 thing	 as	 a	BBG	drug.	 This	 corrected	 version	 of
Savage’s	sure-thing	principle	does	not	follow	from	classical	logic:	to	prove	it,
you	 need	 a	 causal	 calculus	 invoking	 the	 do-operator.	 Our	 strong	 intuitive
belief	 that	 a	 BBG	 drug	 is	 impossible	 suggests	 that	 humans	 (as	 well	 as
machines	programmed	to	emulate	human	thought)	use	something	like	the	do-
calculus	to	guide	their	intuition.

According	to	the	corrected	sure-thing	principle,	one	of	the	following	three
statements	must	be	false:	Drug	D	 increases	the	probability	of	heart	attack	in
men	 and	 women;	 Drug	D	 decreases	 the	 probability	 of	 heart	 attack	 in	 the
population	as	a	whole;	and	the	drug	does	not	change	the	number	of	men	and
women.	Since	it’s	very	implausible	that	a	drug	would	change	a	patient’s	sex,
one	of	the	first	two	statements	must	be	false.

Which	is	it?	In	vain	will	you	seek	guidance	from	Table	6.4.	To	answer	the
question,	we	must	 look	 beyond	 the	 data	 to	 the	 data-generating	 process.	As
always,	 it	 is	 practically	 impossible	 to	 discuss	 that	 process	without	 a	 causal
diagram.

The	diagram	in	Figure	6.4	encodes	 the	crucial	 information	 that	gender	 is
unaffected	by	the	drug	and,	in	addition,	gender	affects	the	risk	of	heart	attack
(men	being	at	greater	risk)	and	whether	the	patient	chooses	to	take	Drug	D.	In
the	 study,	 women	 clearly	 had	 a	 preference	 for	 taking	 Drug	 D	 and	 men
preferred	not	to.	Thus	Gender	is	a	confounder	of	Drug	and	Heart	Attack.	For
an	unbiased	estimate	of	the	effect	of	Drug	on	Heart	Attack,	we	must	adjust	for
the	 confounder.	We	can	do	 that	 by	 looking	 at	 the	data	 for	men	 and	women
separately,	then	taking	the	average:

FIGURE	6.4.	Causal	diagram	for	the	Simpson’s	paradox	example.

•	For	women,	the	rate	of	heart	attacks	was	5	percent	without	Drug
D	and	7.5	percent	with	Drug	D.



•	For	men,	the	rate	of	heart	attacks	was	30	percent	without	Drug	D
and	40	percent	with.

•	 Taking	 the	 average	 (because	 men	 and	 women	 are	 equally
frequent	 in	 the	 general	 population),	 the	 rate	 of	 heart	 attacks
without	Drug	D	is	17.5	percent	(the	average	of	5	and	30),	and	the
rate	with	Drug	D	is	23.75	percent	(the	average	of	7.5	and	40).

This	is	the	clear	and	unambiguous	answer	we	were	looking	for.	Drug	D	isn’t
BBG,	it’s	BBB:	bad	for	women,	bad	for	women,	and	bad	for	people.

I	don’t	want	you	to	get	the	impression	from	this	example	that	aggregating
the	 data	 is	 always	 wrong	 or	 that	 partitioning	 the	 data	 is	 always	 right.	 It
depends	on	the	process	that	generated	the	data.	In	the	Monty	Hall	paradox,	we
saw	 that	 changing	 the	 rules	 of	 the	 game	 also	 changed	 the	 conclusion.	 The
same	 principle	 works	 here.	 I’ll	 use	 a	 different	 story	 to	 demonstrate	 when
pooling	the	data	would	be	appropriate.	Even	though	the	data	will	be	precisely
the	 same,	 the	 role	 of	 the	 “lurking	 third	variable”	will	 differ	 and	 so	will	 the
conclusion.

Let’s	 begin	 with	 the	 assumption	 that	 blood	 pressure	 is	 known	 to	 be	 a
possible	 cause	 of	 heart	 attack,	 and	 Drug	 B	 is	 supposed	 to	 reduce	 blood
pressure.	 Naturally,	 the	 Drug	 B	 researchers	 wanted	 to	 see	 if	 it	 might	 also
reduce	heart	attack	risk,	so	they	measured	their	patients’	blood	pressure	after
treatment,	as	well	as	whether	they	had	a	heart	attack.

Table	 6.6	 shows	 the	 data	 from	 the	 study	 of	 Drug	 B.	 It	 should	 look
amazingly	familiar:	 the	numbers	are	the	same	as	in	Table	6.4!	Nevertheless,
the	 conclusion	 is	 exactly	 the	 opposite.	 As	 you	 can	 see,	 taking	 Drug	 B
succeeded	 in	 lowering	 the	 patients’	 blood	 pressure:	 among	 the	 people	 who
took	 it,	 twice	as	many	had	 low	blood	pressure	afterward	 (forty	out	of	 sixty,
compared	to	twenty	out	of	sixty	in	the	control	group).	In	other	words,	it	did
exactly	what	an	anti–heart	attack	drug	should	do.	 It	moved	people	 from	the
higher-risk	 category	 into	 the	 lower-risk	 category.	 This	 factor	 outweighs
everything	 else,	 and	we	 can	 justifiably	 conclude	 that	 the	 aggregated	part	 of
Table	6.6	gives	us	the	correct	result.

TABLE	6.6.	Fictitious	data	for	blood	pressure	example.



As	 usual,	 a	 causal	 diagram	will	 make	 everything	 clear	 and	 allow	 us	 to
derive	 the	 result	 mechanically,	 without	 even	 thinking	 about	 the	 data	 or
whether	the	drug	lowers	or	increases	blood	pressure.	In	this	case	our	“lurking
third	variable”	is	Blood	Pressure,	and	the	diagram	looks	like	Figure	6.5.	Here,
Blood	Pressure	is	a	mediator	rather	than	a	confounder.	A	single	glance	at	the
diagram	 reveals	 that	 there	 is	 no	 confounder	 of	 the	 Drug	 	 Heart	 Attack
relationship	(i.e.,	no	back-door	path),	so	stratifying	the	data	is	unnecessary.	In
fact,	 conditioning	 on	Blood	Pressure	would	 disable	 one	 of	 the	 causal	 paths
(maybe	 the	 main	 causal	 path)	 by	 which	 the	 drug	 works.	 For	 both	 these
reasons,	our	conclusion	is	the	exact	opposite	of	what	it	was	for	Drug	D:	Drug
B	works,	and	the	aggregate	data	reveal	this	fact.

From	a	historical	point	of	view,	it	is	noteworthy	that	Simpson,	in	his	1951
paper	 that	 started	all	 the	 ruckus,	did	 exactly	 the	 same	 thing	 that	 I	 have	 just
done.	He	presented	two	stories	with	exactly	the	same	data.	In	one	example,	it
was	intuitively	clear	that	aggregating	the	data	was,	in	his	words,	“the	sensible
interpretation”;	in	the	other	example,	partitioning	the	data	was	more	sensible.
So	 Simpson	 understood	 that	 there	 was	 a	 paradox,	 not	 just	 a	 reversal.
However,	 he	 suggested	 no	 resolution	 to	 the	 paradox	 other	 than	 common
sense.	Most	 importantly,	 he	 did	 not	 suggest	 that,	 if	 the	 story	 contains	 extra
information	that	makes	the	difference	between	“sensible”	and	“not	sensible,”
perhaps	statisticians	should	embrace	that	extra	information	in	their	analysis.

FIGURE	6.5.	Causal	diagram	for	the	Simpson’s	paradox	example	(second	version).

Dennis	 Lindley	 and	Melvin	 Novick	 considered	 this	 suggestion	 in	 1981,



but	 they	could	not	 reconcile	 themselves	 to	 the	 idea	 that	 the	correct	decision
depends	on	the	causal	story,	not	on	the	data.	They	confessed,	“One	possibility
would	be	to	use	the	language	of	causation.…	We	have	not	chosen	to	do	this;
nor	to	discuss	causation,	because	the	concept,	although	widely	used,	does	not
seem	to	be	well-defined.”	With	these	words,	they	summarized	the	frustration
of	 five	 generations	 of	 statisticians,	 recognizing	 that	 causal	 information	 is
badly	needed	but	the	language	for	expressing	it	is	hopelessly	lacking.	In	2009,
four	 years	 before	 his	 death	 at	 age	 ninety,	 Lindley	 confided	 in	 me	 that	 he
would	not	have	written	those	words	if	my	book	had	been	available	in	1981.

Some	 readers	 of	 my	 books	 and	 articles	 have	 suggested	 that	 the	 rule
governing	 data	 aggregation	 and	 separation	 rests	 simply	 on	 the	 temporal
precedence	of	the	treatment	and	the	“lurking	third	variable.”	They	argue	that
we	should	aggregate	the	data	in	the	case	of	blood	pressure	because	the	blood
pressure	measurement	comes	after	 the	patient	 takes	 the	drug,	but	we	should
stratify	 the	 data	 in	 the	 case	 of	 gender	 because	 it	 is	 determined	 before	 the
patient	 takes	 the	drug.	While	 this	 rule	will	work	 in	a	great	many	cases,	 it	 is
not	foolproof.	A	simple	case	is	that	of	M-bias	(Game	4	in	Chapter	4).	Here	B
can	 precede	A;	 yet	 we	 should	 still	 not	 condition	 on	B,	 because	 that	would
violate	the	back-door	criterion.	We	should	consult	the	causal	structure	of	the
story,	not	the	temporal	information.

Finally,	you	might	wonder	if	Simpson’s	paradox	occurs	in	the	real	world.
The	 answer	 is	 yes.	 It	 is	 certainly	 not	 common	 enough	 for	 statisticians	 to
encounter	on	a	daily	basis,	but	nor	is	it	completely	unknown,	and	it	probably
happens	 more	 often	 than	 journal	 articles	 report.	 Here	 are	 two	 documented
cases:

•	 In	 an	 observational	 study	 published	 in	 1996,	 open	 surgery	 to
remove	kidney	stones	had	a	better	success	 rate	 than	endoscopic
surgery	for	small	kidney	stones.	It	also	had	a	better	success	rate
for	 large	 kidney	 stones.	 However,	 it	 had	 a	 lower	 success	 rate
overall.	 Just	 as	 in	 our	 first	 example,	 this	was	 a	 case	where	 the
choice	 of	 treatment	 was	 related	 to	 the	 severity	 of	 the	 patients’
case:	larger	stones	were	more	likely	to	lead	to	open	surgery	and
also	had	a	worse	prognosis.

•	 In	a	 study	of	 thyroid	disease	published	 in	1995,	 smokers	had	a
higher	 survival	 rate	 (76	 percent)	 over	 twenty	 years	 than
nonsmokers	(69	percent).	However,	the	nonsmokers	had	a	better
survival	 rate	 in	 six	out	 of	 seven	 age	groups,	 and	 the	difference



was	 minimal	 in	 the	 seventh.	 Age	 was	 clearly	 a	 confounder	 of
Smoking	and	Survival:	the	average	smoker	was	younger	than	the
average	 nonsmoker	 (perhaps	 because	 the	 older	 smokers	 had
already	 died).	 Stratifying	 the	 data	 by	 age,	 we	 conclude	 that
smoking	has	a	negative	impact	on	survival.

Because	 Simpson’s	 paradox	 has	 been	 so	 poorly	 understood,	 some
statisticians	 take	precautions	 to	 avoid	 it.	All	 too	often,	 these	methods	 avoid
the	symptom,	Simpson’s	 reversal,	without	doing	anything	about	 the	disease,
confounding.	 Instead	of	suppressing	 the	 symptoms,	we	 should	pay	attention
to	 them.	 Simpson’s	 paradox	 alerts	 us	 to	 cases	 where	 at	 least	 one	 of	 the
statistical	 trends	(either	 in	 the	aggregated	data,	 the	partitioned	data,	or	both)
cannot	represent	the	causal	effects.	There	are,	of	course,	other	warning	signs
of	 confounding.	 The	 aggregated	 estimate	 of	 the	 causal	 effect	 could,	 for
example,	 be	 larger	 than	 each	 of	 the	 estimates	 in	 each	 of	 the	 strata;	 this
likewise	 should	not	happen	 if	we	have	 controlled	properly	 for	 confounders.
Compared	 to	 such	 signs,	 however,	 Simpson’s	 reversal	 is	 harder	 to	 ignore
precisely	because	it	is	a	reversal,	a	qualitative	change	in	the	sign	of	the	effect.
The	 idea	 of	 a	BBG	drug	would	 evoke	 disbelief	 even	 from	 a	 three-year-old
child—and	rightly	so.

SIMPSON’S	PARADOX	IN	PICTURES

So	far	most	of	our	examples	of	Simpson’s	reversal	and	paradox	have	involved
binary	variables:	a	patient	either	got	Drug	D	or	didn’t	and	either	had	a	heart
attack	 or	 didn’t.	 However,	 the	 reversal	 can	 also	 occur	 with	 continuous
variables	and	is	perhaps	easier	to	understand	in	that	case	because	we	can	draw
a	picture.

Consider	a	study	that	measures	weekly	exercise	and	cholesterol	 levels	 in
various	 age	 groups.	 When	 we	 plot	 hours	 of	 exercise	 on	 the	 x-axis	 and
cholesterol	 on	 the	 y-axis,	 as	 in	 Figure	 6.6(a),	 we	 see	 in	 each	 age	 group	 a
downward	trend,	indicating	perhaps	that	exercise	reduces	cholesterol.	On	the
other	hand,	if	we	use	the	same	scatter	plot	but	don’t	segregate	the	data	by	age,
as	 in	Figure	6.6(b),	 then	we	see	a	pronounced	upward	 trend,	 indicating	 that
the	more	 people	 exercise,	 the	 higher	 their	 cholesterol	 becomes.	Once	 again
we	seem	to	have	a	BBG	drug	situation,	where	Exercise	is	the	drug:	it	seems	to
have	 a	 beneficial	 effect	 in	 each	 age	 group	 but	 a	 harmful	 effect	 on	 the
population	as	a	whole.



To	decide	whether	Exercise	is	beneficial	or	harmful,	as	always,	we	need	to
consult	 the	 story	 behind	 the	 data.	 The	 data	 show	 that	 older	 people	 in	 our
population	 exercise	 more.	 Because	 it	 seems	 more	 likely	 that	 Age	 causes
Exercise	 rather	 than	vice	versa,	 and	 since	Age	may	have	 a	 causal	 effect	 on
Cholesterol,	 we	 conclude	 that	 Age	 may	 be	 a	 confounder	 of	 Exercise	 and
Cholesterol.	So	we	should	control	for	Age.	In	other	words,	we	should	look	at
the	age-segregated	data	and	conclude	that	exercise	is	beneficial,	regardless	of
age.

FIGURE	6.6.	Simpson’s	paradox:	exercise	appears	to	be	beneficial	(downward	slope)

in	each	age	group	but	harmful	(upward	slope)	in	the	population	as	a	whole.

A	 cousin	 of	 Simpson’s	 paradox	 has	 also	 been	 lurking	 in	 the	 statistical
literature	for	decades	and	lends	itself	nicely	to	a	visual	interpretation.	Frederic
Lord	originally	stated	this	paradox	in	1967.	It’s	again	fictitious,	but	fictitious
examples	(like	Einstein’s	thought	experiments)	always	provide	a	good	way	to
probe	the	limits	of	our	understanding.



Lord	 posits	 a	 school	 that	 wants	 to	 study	 the	 effects	 of	 the	 diet	 it	 is
providing	in	its	dining	halls	and	in	particular	whether	it	has	different	effects
on	girls	and	boys.	To	this	end,	the	students’	weight	is	measured	in	September
and	 again	 the	 following	 June.	 Figure	6.7	 plots	 the	 results,	 with	 the	 ellipses
once	 again	 representing	 a	 scatter	 plot	 of	 data.	 The	 university	 retains	 two
statisticians,	who	look	at	the	data	and	come	to	opposite	conclusions.

The	 first	 statistician	 looks	 at	 the	weight	distribution	 for	girls	 as	 a	whole
and	 notes	 that	 the	 average	 weight	 of	 the	 girls	 is	 the	 same	 in	 June	 as	 in
September.	(This	can	be	seen	from	the	symmetry	of	the	scatter	plot	around	the
line	WF	 =	WI,	 i.e.,	 final	 weight	 =	 initial	 weight.)	 Individual	 girls	 may,	 of
course,	 gain	 or	 lose	weight,	 but	 the	 average	weight	 gain	 is	 zero.	 The	 same
observation	is	true	for	the	boys.	Therefore,	the	statistician	concludes	that	the
diet	has	no	differential	effect	on	the	sexes.

FIGURE	6.7.	Lord’s	paradox.	(Ellipses	represent	scatter	plots	of	data.)	As	a	whole,

neither	boys	nor	girls	gain	weight	during	the	year,	but	in	each	stratum	of	the	initial
weight,	boys	tend	to	gain	more	than	girls.

The	 second	 statistician,	 on	 the	 other	 hand,	 argues	 that	 because	 the	 final
weight	 of	 a	 student	 is	 strongly	 influenced	 by	 his	 or	 her	 initial	 weight,	 we
should	 stratify	 the	 students	 by	 initial	 weight.	 If	 you	 make	 a	 vertical	 slice
through	both	ellipses,	which	corresponds	to	looking	only	at	the	boys	and	girls
with	a	particular	value	of	 the	 initial	weight	(say	W0	 in	Figure	6.7),	you	will
notice	that	the	vertical	line	intersects	the	Boys	ellipse	higher	up	than	it	does
the	Girls	 ellipse,	 although	 there	 is	 a	 certain	 amount	 of	 overlap.	This	means
that	 boys	who	 started	with	weight	W0	will	 have,	 on	 average,	 a	 higher	 final
weight	 (WF)	 than	 the	 girls	 who	 started	 with	 weight	W0.	 Accordingly,	 Lord
writes,	“the	second	statistician	concludes,	as	is	customary	in	such	cases,	that
the	boys	showed	significantly	more	gain	in	weight	than	the	girls	when	proper
allowance	is	made	for	differences	in	initial	weight	between	the	sexes.”

What	is	the	school’s	dietitian	to	do?	Lord	writes,	“The	conclusions	of	each



statistician	are	visibly	correct.”	That	is,	you	don’t	have	to	crunch	any	numbers
to	see	that	two	solid	arguments	are	leading	to	two	different	conclusions.	You
need	only	 look	at	 the	 figure.	 In	Figure	6.7,	we	can	see	 that	boys	gain	more
weight	 than	 girls	 in	 every	 stratum	 (every	 vertical	 cross	 section).	 Yet	 it’s
equally	obvious	that	both	boys	and	girls	gained	nothing	overall.	How	can	that
be?	Is	not	the	overall	gain	just	an	average	of	the	stratum-specific	gains?

Now	that	we	are	experienced	pros	at	the	fine	points	of	Simpson’s	paradox
and	the	sure-thing	principle,	we	know	what	is	wrong	with	that	argument.	The
sure-thing	principle	works	only	in	cases	where	the	relative	proportion	of	each
subpopulation	(each	weight	class)	does	not	change	from	group	to	group.	Yet,
in	Lord’s	case,	 the	“treatment”	(gender)	very	strongly	affects	 the	percentage
of	students	in	each	weight	class.

So	we	 can’t	 rely	 on	 the	 sure-thing	 principle,	 and	 that	 brings	 us	 back	 to
square	one.	Who	 is	 right?	 Is	 there	or	 isn’t	 there	 a	difference	 in	 the	 average
weight	 gains	 between	 boys	 and	 girls	 when	 proper	 allowance	 is	 made	 for
differences	in	the	initial	weight	between	the	sexes?	Lord’s	conclusion	is	very
pessimistic:	“The	usual	research	study	of	this	type	is	attempting	to	answer	a
question	that	simply	cannot	be	answered	in	any	rigorous	way	on	the	basis	of
available	 data.”	 Lord’s	 pessimism	 spread	 beyond	 statistics	 and	 has	 led	 to	 a
rich	and	quite	pessimistic	literature	in	epidemiology	and	biostatistics	on	how
to	compare	groups	that	differ	in	“baseline”	statistics.

I	 will	 show	 now	 why	 Lord’s	 pessimism	 is	 unjustified.	 The	 dietitian’s
question	can	be	answered	in	a	rigorous	way,	and	as	usual	the	starting	point	is
to	draw	a	causal	diagram,	as	 in	Figure	6.8.	In	 this	diagram,	we	see	 that	Sex
(S)	is	a	cause	of	initial	weight	(WI)	and	final	weight	(WF).	Also,	WI	affects	WF
independently	of	gender,	because	students	of	either	gender	who	weigh	more
at	 the	 beginning	 of	 the	 year	 tend	 to	weigh	more	 at	 the	 end	 of	 the	 year,	 as
shown	 by	 the	 scatter	 plots	 in	 Figure	 6.7.	 All	 these	 causal	 assumptions	 are
commonsensical;	I	would	not	expect	Lord	to	disagree	with	them.

The	 variable	 of	 interest	 to	 Lord	 is	 the	 weight	 gain,	 shown	 as	 Y	 in	 this
diagram.	 Note	 that	 Y	 is	 related	 to	 WI	 and	WF	 in	 a	 purely	 mathematical,
deterministic	way:	Y	 =	WF–WI.	 This	means	 that	 the	 correlations	 between	Y
and	 WI	 (or	 Y	 and	 WF)	 are	 equal	 to	 –1	 (or	 1),	 and	 I	 have	 shown	 this
information	on	the	diagram	with	the	coefficients	–1	and	+1.



FIGURE	6.8.	Causal	diagram	for	Lord’s	paradox.

The	 first	 statistician	 simply	 compares	 the	 difference	 in	 weight	 gain
between	girls	and	boys.	No	back	doors	between	S	and	Y	need	to	be	blocked,
so	 the	 observed,	 aggregated	 data	 provide	 the	 answer:	 no	 effect,	 as	 the	 first
statistician	concluded.

By	 contrast,	 it	 is	 hard	 to	 even	 formulate	 the	 question	 that	 the	 second
statistician	 is	 trying	 to	 answer	 (that	 is,	 the	 “correctly	 formulated	 query”
described	in	 the	Introduction).	He	wants	 to	ensure	 that	“proper	allowance	 is
made	 for	 differences	 in	 initial	 weight	 between	 the	 two	 sexes,”	 which	 is
language	you	would	usually	use	when	controlling	for	a	confounder.	But	WI	is
not	a	confounder	of	S	and	Y.	It	is	actually	a	mediating	variable	if	we	consider
Sex	to	be	the	treatment.	Thus,	the	query	answered	by	controlling	for	WI	does
not	 have	 the	 usual	 causal	 effect	 interpretation.	 Such	 control	 may	 at	 best
provide	an	estimate	of	the	“direct	effect”	of	gender	on	weight,	which	we	will
discuss	in	Chapter	9.	However,	it	seems	unlikely	that	this	is	what	the	second
statistician	had	in	mind;	more	likely	he	was	adjusting	out	of	habit.	And	yet	his
argument	 is	 such	 an	 easy	 trap	 to	 fall	 into:	 “Is	 not	 the	 overall	 gain	 just	 an
average	 of	 the	 stratum-specific	 gains?”	 Not	 if	 the	 strata	 themselves	 are
shifting	under	treatment!	Remember	that	Sex,	not	Diet,	is	the	treatment,	and
Sex	definitely	changes	the	proportion	of	students	in	each	stratum	of	WI.

This	last	comment	brings	up	one	more	curious	point	about	Lord’s	paradox
as	originally	phrased.	Although	the	stated	intention	of	the	school	dietitian	is	to
“determine	 the	effects	of	 the	diet,”	nowhere	 in	his	original	paper	does	Lord
mention	a	control	diet.	Therefore	we	can’t	even	say	anything	about	the	diet’s
effects.	A	2006	paper	by	Howard	Wainer	and	Lisa	Brown	attempts	to	remedy
this	defect.	They	change	the	story	so	that	the	quantity	of	interest	is	the	effect
of	 diet	 (not	 gender)	 on	 weight	 gain,	 while	 gender	 differences	 are	 not
considered.	In	 their	version,	 the	students	eat	 in	one	of	 two	dining	halls	with
different	 diets.	 Accordingly,	 the	 two	 ellipses	 of	 Figure	 6.7	 represent	 two
dining	halls,	each	serving	a	different	diet,	as	depicted	in	Figure	6.9(a).	Note
that	the	students	who	weigh	more	in	the	beginning	tend	to	eat	in	dining	hall	B,



while	the	ones	who	weigh	less	eat	in	dining	hall	A.

Lord’s	paradox	now	surfaces	with	greater	clarity,	 since	 the	query	 is	well
defined	 as	 the	 effect	 of	 diet	 on	 gain.	 The	 first	 statistician	 claims,	 based	 on
symmetry	 considerations,	 that	 switching	 from	 Diet	 A	 to	B	 would	 have	 no
effect	 on	weight	 gain	 (the	 difference	WF	 –	WI	 has	 the	 same	 distribution	 in
both	ellipses).	The	second	statistician	compares	the	final	weights	under	Diet	A
to	 those	 of	 Diet	 B	 for	 a	 group	 of	 students	 starting	 with	 weight	 W0	 and
concludes	that	the	students	on	Diet	B	gain	more	weight.

As	before,	the	data	(Figure	6.9[a])	can’t	tell	you	whom	to	believe,	and	this
is	 indeed	 what	 Wainer	 and	 Brown	 conclude.	 However,	 a	 causal	 diagram
(Figure	6.9[b])	can	settle	the	issue.	There	are	two	significant	changes	between
Figure	6.8	and	Figure	6.9(b).	First,	the	causal	variable	becomes	D	(for	“diet”),
not	S.	 Second,	 the	 arrow	 that	 originally	 pointed	 from	S	 to	WI	 now	 reverses
direction:	the	initial	weight	now	affects	the	diet,	so	the	arrow	points	from	WI
to	D.

In	 this	 diagram,	 WI	 is	 a	 confounder	 of	 D	 and	 WF,	 not	 a	 mediator.
Therefore,	 the	 second	 statistician	 would	 be	 unambiguously	 correct	 here.
Controlling	for	the	initial	weight	is	essential	to	deconfound	D	and	WF	(as	well
as	D	and	Y).	The	first	statistician	would	be	wrong,	because	he	would	only	be
measuring	statistical	associations,	not	causal	effects.

To	 summarize,	 for	 us	 the	main	 lesson	 of	 Lord’s	 paradox	 is	 that	 it	 is	 no
more	of	a	paradox	than	Simpson’s.	In	one	paradox,	the	association	reverses;
in	the	other,	it	disappears.	In	either	case,	the	causal	diagram	will	tell	us	what
procedure	 we	 need	 to	 use.	 However,	 for	 statisticians	 who	 are	 trained	 in
“conventional”	 (i.e.,	 model-blind)	 methodology	 and	 avoid	 using	 causal
lenses,	it	is	deeply	paradoxical	that	the	correct	conclusion	in	one	case	would
be	incorrect	in	another,	even	though	the	data	look	exactly	the	same.



FIGURE	6.9.	Wainer	and	Brown’s	revised	version	of	Lord’s	paradox	and	the

corresponding	causal	diagram.

Now	that	we	have	a	thorough	grounding	in	colliders,	confounders,	and	the
perils	that	both	pose,	we	are	at	last	prepared	to	reap	the	fruits	of	our	labor.	In
the	next	chapter	we	begin	our	ascent	up	the	Ladder	of	Causation,	beginning
with	rung	two:	intervention.



Scaling	“Mount	Intervention.”	The	most	familiar	methods	to	estimate	the	effect	of
an	intervention,	in	the	presence	of	confounders,	are	the	back-door	adjustment	and
instrumental	variables.	The	method	of	front-door	adjustment	was	unknown	before
the	introduction	of	causal	diagrams.	The	do-calculus,	which	my	students	have	fully
automated,	makes	it	possible	to	tailor	the	adjustment	method	to	any	particular

causal	diagram.	(Source:	Drawing	by	Dakota	Harr.)
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BEYOND	ADJUSTMENT:	THE
CONQUEST	OF	MOUNT	INTERVENTION

He	whose	actions	exceed	his	theory,	his	theory	shall	endure.

—RABBI	HANINA	BEN	DOSA	(FIRST	CENTURY	AD)

IN	this	chapter	we	finally	make	our	bold	ascent	onto	the	second	level	of	the
Ladder	 of	 Causation,	 the	 level	 of	 intervention—the	 holy	 grail	 of	 causal
thinking	 from	 antiquity	 to	 the	 present	 day.	 This	 level	 is	 involved	 in	 the
struggle	 to	predict	 the	effects	of	actions	and	policies	 that	haven’t	been	 tried
yet,	 ranging	 from	 medical	 treatments	 to	 social	 programs,	 from	 economic
policies	 to	 personal	 choices.	 Confounding	 was	 the	 primary	 obstacle	 that
caused	us	 to	confuse	seeing	with	doing.	Having	 removed	 this	 obstacle	with
the	tools	of	“path	blocking”	and	the	back-door	criterion,	we	can	now	map	the
routes	 up	 Mount	 Intervention	 with	 systematic	 precision.	 For	 the	 novice
climber,	 the	safest	 routes	up	 the	mountain	are	 the	back-door	adjustment	and
its	various	 cousins,	 some	going	under	 the	 rubric	of	 “front-door	 adjustment”
and	some	under	“instrumental	variables.”

But	these	routes	may	not	be	available	in	all	cases,	so	for	the	experienced
climber	 this	 chapter	 describes	 a	 “universal	 mapping	 tool”	 called	 the	 do-
calculus,	which	allows	 the	 researcher	 to	explore	and	plot	all	possible	 routes
up	Mount	Intervention,	no	matter	how	twisty.	Once	a	route	has	been	mapped,
and	 the	 ropes	 and	 carabiners	 and	 pitons	 are	 in	 place,	 our	 assault	 on	 the
mountain	will	assuredly	result	in	a	successful	conquest!



THE	SIMPLEST	ROUTE:	THE	BACK-DOOR
ADJUSTMENT	FORMULA

For	many	researchers,	the	most	(perhaps	only)	familiar	method	of	predicting
the	 effect	 of	 an	 intervention	 is	 to	 “control”	 for	 confounders	 using	 the
adjustment	 formula.	This	 is	 the	method	 to	use	 if	you	are	confident	 that	you
have	data	on	a	sufficient	set	of	variables	(called	deconfounders)	 to	block	all
the	back-door	paths	between	the	intervention	and	the	outcome.	To	do	this,	we
measure	 the	 average	 causal	 effect	 of	 an	 intervention	 by	 first	 estimating	 its
effect	 at	 each	 “level,”	 or	 stratum,	 of	 the	 deconfounder.	We	 then	 compute	 a
weighted	average	of	those	strata,	where	each	stratum	is	weighted	according	to
its	prevalence	in	the	population.	If,	for	example,	the	deconfounder	is	gender,
we	first	estimate	the	causal	effect	for	males	and	females.	Then	we	average	the
two,	 if	 the	 population	 is	 (as	 usual)	 half	 male	 and	 half	 female.	 If	 the
proportions	are	different—say,	two-thirds	male	and	one-third	female—then	to
estimate	the	average	causal	effect	we	would	take	a	correspondingly	weighted
average.

The	role	that	the	back-door	criterion	plays	in	this	procedure	is	to	guarantee
that	the	causal	effect	in	each	stratum	of	the	deconfounder	is	none	other	than
the	 observed	 trend	 in	 this	 stratum.	 So	 the	 causal	 effect	 can	 be	 estimated
stratum	by	stratum	from	the	data.	Absent	the	back-door	criterion,	researchers
have	no	guarantee	that	any	adjustment	is	legitimate.

The	 fictitious	 drug	 example	 in	 Chapter	 6	 was	 the	 simplest	 situation
possible:	one	 treatment	variable	 (Drug	D),	one	outcome	(Heart	Attack),	one
confounder	(Gender),	and	all	 three	variables	are	binary.	The	example	shows
how	 we	 take	 a	 weighted	 average	 of	 the	 conditional	 probabilities	 P(heart
attack	|	drug)	in	each	gender	stratum.	But	the	procedure	described	above	can
be	adapted	easily	 to	 handle	more	 complicated	 situations,	 including	multiple
(de)confounders	and	multiple	strata.

However,	in	many	cases,	the	variables	X,	Y,	or	Z	take	numerical	values—
for	 example,	 income	 or	 height	 or	 birth	 weight.	 We	 saw	 this	 in	 our	 visual
example	of	Simpson’s	paradox.	Because	the	variable	could	take	(at	least,	for
all	practical	purposes)	infinite	possible	values,	we	cannot	make	a	table	listing
all	the	possibilities,	as	we	did	in	Chapter	6.

An	obvious	 remedy	 is	 to	 separate	 the	 numerical	 values	 into	 a	 finite	 and
manageable	number	of	 categories.	There	 is	nothing	 in	principle	wrong	with
this	option,	but	 the	choice	of	categories	 is	a	bit	arbitrary.	Worse,	 if	we	have
more	 than	a	handful	of	adjusted	variables,	we	get	an	exponential	blowup	 in



the	 number	 of	 categories.	 This	 will	 make	 the	 procedure	 computationally
prohibitive;	worse	yet,	many	of	the	strata	will	end	up	devoid	of	samples	and
thus	incapable	of	providing	any	probability	estimates	whatsoever.

Statisticians	 have	 devised	 ingenious	methods	 for	 handling	 this	 “curse	 of
dimensionality”	problem.	Most	involve	some	sort	of	extrapolation,	whereby	a
smooth	function	is	fitted	to	the	data	and	used	to	fill	in	the	holes	created	by	the
empty	strata.

The	 most	 widely	 used	 smoothing	 function	 is	 of	 course	 a	 linear
approximation,	which	served	as	 the	workhorse	of	most	quantitative	work	 in
the	social	and	behavioral	sciences	in	the	twentieth	century.	We	have	seen	how
Sewall	 Wright	 embedded	 his	 path	 diagrams	 into	 the	 context	 of	 linear
equations,	 and	 we	 noted	 there	 one	 computational	 advantage	 of	 this
embedding:	 every	 causal	 effect	 can	 be	 represented	 by	 a	 single	 number	 (the
path	 coefficient).	 A	 second	 and	 no	 less	 important	 advantage	 of	 linear
approximations	 is	 the	 astonishing	 simplicity	 of	 computing	 the	 adjustment
formula.

We	have	previously	seen	Francis	Galton’s	 invention	of	a	 regression	 line,
which	 takes	 a	 cloud	 of	 data	 points	 and	 interpolates	 the	 best-fitting	 line
through	that	cloud.	In	the	case	of	one	treatment	variable	(X)	and	one	outcome
variable	(Y),	the	equation	of	the	regression	line	will	look	like	this:	Y	=	aX	+	b.
The	parameter	a	(often	denoted	by	rYX,	the	regression	coefficient	of	Y	on	X)
tells	us	the	average	observed	trend:	a	one-unit	increase	of	X	will,	on	average,
produce	an	a-unit	increase	in	Y.	If	there	are	no	confounders	of	Y	and	X,	 then
we	can	use	this	as	our	estimate	of	an	intervention	to	increase	X	by	one	unit.

But	 what	 if	 there	 is	 a	 confounder,	 Z?	 In	 this	 case,	 the	 correlation
coefficient	rYX	will	not	give	us	the	average	causal	effect;	it	only	gives	us	the
average	observed	trend.	That	was	the	case	in	Wright’s	problem	of	the	guinea
pig	 birth	weights,	 discussed	 in	Chapter	2,	where	 the	 apparent	 benefit	 (5.66
grams)	of	an	extra	day’s	gestation	was	biased	because	it	was	confounded	with
the	effect	of	a	smaller	 litter	size.	But	 there	 is	still	a	way	out:	by	plotting	all
three	variables	together,	with	each	value	of	(X,	Y,	Z)	describing	one	point	 in
space.	 In	 this	 case,	 the	 data	will	 form	 a	 cloud	 of	 points	 in	XYZ-space.	 The
analogue	of	a	regression	line	is	a	regression	plane,	which	has	an	equation	that
looks	like	Y	=	aX	+	bZ	+	c.	We	can	easily	compute	a,	b,	c	from	the	data.	Here
something	wonderful	happens,	which	Galton	did	not	realize	but	Karl	Pearson
and	George	Udny	Yule	certainly	did.	The	coefficient	a	gives	us	the	regression
coefficient	of	Y	on	X	already	adjusted	for	Z.	 (It	 is	called	a	partial	 regression
coefficient	and	written	rYX.Z.)



Thus	we	can	skip	the	cumbersome	procedure	of	regressing	Y	on	X	for	each
level	of	Z	and	computing	the	weighted	average	of	the	regression	coefficients.
Nature	already	does	all	the	averaging	for	us!	We	need	only	compute	the	plane
that	 best	 fits	 the	 data.	 A	 statistical	 package	 will	 do	 it	 in	 no	 time.	 The
coefficient	a	in	the	equation	of	that	plane,	Y	=	aX	+	bZ	+	c,	will	automatically
adjust	the	observed	trend	of	Y	on	X	to	account	for	the	confounder	Z.	If	Z	is	the
only	 confounder,	 then	 a	 is	 the	 average	 causal	 effect	 of	 X	 on	 Y.	 A	 truly
miraculous	simplification!

You	 can	 easily	 extend	 the	 procedure	 to	 deal	 with	 multiple	 variables	 as
well.	 If	 the	 set	 of	 variables	 Z	 should	 happen	 to	 satisfy	 the	 back-door
condition,	then	the	coefficient	of	X	in	the	regression	equation,	a,	will	be	none
other	than	the	average	causal	effect	of	X	on	Y.

For	this	reason	generations	of	researchers	came	to	believe	that	adjusted	(or
partial)	regression	coefficients	are	somehow	endowed	with	causal	information
that	unadjusted	regression	coefficients	lack.	Nothing	could	be	further	from	the
truth.	 Regression	 coefficients,	 whether	 adjusted	 or	 not,	 are	 only	 statistical
trends,	conveying	no	 causal	 information	 in	 themselves.	 rYX.Z	 represents	 the
causal	effect	of	X	on	Y,	whereas	rYX	does	not,	exclusively	because	we	have	a
diagram	showing	Z	as	a	confounder	of	X	and	Y.

In	short,	sometimes	a	regression	coefficient	represents	a	causal	effect,	and
sometimes	 it	does	not—and	you	can’t	 rely	on	 the	data	alone	 to	 tell	you	 the
difference.	 Two	 additional	 ingredients	 are	 required	 to	 endow	 rYX.Z	 with
causal	legitimacy.	First,	the	path	diagram	should	represent	a	plausible	picture
of	reality,	and	second,	the	adjusted	variable(s)	Z	should	satisfy	the	back-door
criterion.

That	 is	 why	 it	 was	 so	 crucial	 that	 Sewall	 Wright	 distinguished	 path
coefficients	 (which	 represent	 causal	 effects)	 from	 regression	 coefficients
(which	 represent	 trends	 of	 data	 points).	 Path	 coefficients	 are	 fundamentally
different	 from	 regression	 coefficients,	 although	 they	 can	often	 be	 computed
from	the	latter.	Wright	failed	to	realize,	however,	as	did	all	path	analysts	and
econometricians	 after	 him,	 that	 his	 computations	 were	 unnecessarily
complicated.	 He	 could	 have	 gotten	 the	 path	 coefficients	 from	 partial
correlation	coefficients,	if	only	he	had	known	that	the	proper	set	of	adjusting
variables	can	be	identified,	by	inspection,	from	the	path	diagram	itself.

Keep	 in	 mind	 also	 that	 the	 regression-based	 adjustment	 works	 only	 for
linear	 models,	 which	 involve	 a	 major	 modeling	 assumption.	 With	 linear
models,	we	lose	the	ability	to	model	nonlinear	interactions,	such	as	when	the
effect	of	X	on	Y	depends	on	the	level	of	Z.	The	back-door	adjustment,	on	the



other	 hand,	 still	works	 fine	 even	when	we	 have	 no	 idea	what	 functions	 are
behind	the	arrows	in	the	diagrams.	But	 in	 this	so-called	nonparametric	case,
we	 need	 to	 employ	 other	 extrapolation	 methods	 to	 deal	 with	 the	 curse	 of
dimensionality.

To	sum	up,	the	back-door	adjustment	formula	and	the	back-door	criterion
are	 like	 the	front	and	back	of	a	coin.	The	back-door	criterion	 tells	us	which
sets	of	variables	we	can	use	to	deconfound	our	data.	The	adjustment	formula
actually	 does	 the	 deconfounding.	 In	 the	 simplest	 case	 of	 linear	 regression,
partial	regression	coefficients	perform	the	back-door	adjustment	implicitly.	In
the	nonparametric	case,	we	must	do	the	adjustment	explicitly,	either	using	the
back-door	 adjustment	 formula	 directly	 on	 the	 data	 or	 on	 some	 extrapolated
version	of	it.

You	might	 think	 that	our	assault	on	Mount	 Intervention	would	end	 there
with	complete	success.	Unfortunately,	though,	adjustment	does	not	work	at	all
if	 there	 is	 a	 back-door	 path	 we	 cannot	 block	 because	 we	 don’t	 have	 the
requisite	data.	Yet	we	can	still	use	certain	tricks	even	in	this	situation.	I	will
tell	 you	 about	 one	 of	 my	 favorite	 methods	 next,	 called	 the	 front-door
adjustment.	Even	though	it	was	published	more	than	twenty	years	ago,	only	a
handful	 of	 researchers	 have	 taken	 advantage	 of	 this	 shortcut	 up	 Mount
Intervention,	and	I	am	convinced	that	its	full	potential	remains	untapped.

THE	FRONT-DOOR	CRITERION

The	debate	over	the	causal	effect	of	smoking	occurred	at	least	two	generations
too	early	for	causal	diagrams	to	make	any	contribution.	We	have	already	seen
how	 Cornfield’s	 inequality	 helped	 persuade	 researchers	 that	 the	 smoking
gene,	 or	 “constitutional	 hypothesis,”	 was	 highly	 implausible.	 But	 a	 more
radical	 approach,	using	causal	diagrams,	 could	have	 shed	more	 light	on	 the
hypothetical	gene	and	possibly	eliminated	it	from	further	consideration.

Suppose	that	researchers	had	measured	the	tar	deposits	in	smokers’	lungs.
Even	in	the	1950s,	the	formation	of	tar	deposits	was	suspected	as	one	of	the
possible	intermediate	stages	in	the	development	of	lung	cancer.	Suppose	also
that,	 just	 like	 the	 Surgeon	General’s	 committee,	we	want	 to	 rule	 out	 R.	A.
Fisher’s	 hypothesis	 that	 a	 smoking	 gene	 confounds	 smoking	 behavior	 and
lung	cancer.	We	might	then	arrive	at	the	causal	diagram	in	Figure	7.1.

Figure	 7.1	 incorporates	 two	 very	 important	 assumptions,	 which	 we’ll
suppose	are	valid	for	the	purpose	of	our	example.	The	first	assumption	is	that



the	 smoking	 gene	 has	 no	 effect	 on	 the	 formation	 of	 tar	 deposits,	which	 are
exclusively	due	to	the	physical	action	of	cigarette	smoke.	(This	assumption	is
indicated	by	the	lack	of	an	arrow	between	Smoking	Gene	and	Tar;	it	does	not
rule	out,	 however,	 random	 factors	unrelated	 to	Smoking	Gene.)	The	 second
significant	 assumption	 is	 that	 Smoking	 leads	 to	 Cancer	 only	 through	 the
accumulation	 of	 tar	 deposits.	 Thus	 we	 assume	 that	 no	 direct	 arrow	 points
from	Smoking	to	Cancer,	and	there	are	no	other	indirect	pathways.

FIGURE	7.1.	Hypothetical	causal	diagram	for	smoking	and	cancer,	suitable	for	front-

door	adjustment.

Suppose	we	are	doing	an	observational	study	and	have	collected	data	on
Smoking,	 Tar,	 and	 Cancer	 for	 each	 of	 the	 participants.	 Unfortunately,	 we
cannot	collect	data	on	 the	Smoking	Gene	because	we	do	not	know	whether
such	 a	 gene	 exists.	 Lacking	 data	 on	 the	 confounding	 variable,	 we	 cannot
block	 the	 back-door	 path	 Smoking	 	 Smoking	 Gene	 	 Cancer.	 Thus	 we
cannot	use	back-door	adjustment	to	control	for	the	effect	of	the	confounder.

So	we	must	 look	for	another	way.	 Instead	of	going	 in	 the	back	door,	we
can	go	in	the	front	door!	In	this	case,	the	front	door	is	the	direct	causal	path
Smoking	 	Tar	 	Cancer,	for	which	we	do	have	data	on	all	three	variables.
Intuitively,	 the	 reasoning	 is	 as	 follows.	 First,	 we	 can	 estimate	 the	 average
causal	 effect	 of	 Smoking	 on	 Tar,	 because	 there	 is	 no	 unblocked	 back-door
path	from	Smoking	to	Cancer,	as	the	Smoking	 	Smoking	Gene	 	Cancer	
Tar	path	 is	 already	blocked	by	 the	 collider	 at	Cancer.	Because	 it	 is	 blocked
already,	we	 don’t	 even	 need	 back-door	 adjustment.	We	 can	 simply	 observe
P(tar	 |	 smoking)	 and	P(tar	 |	no	 smoking),	 and	 the	 difference	 between	 them
will	be	the	average	causal	effect	of	Smoking	on	Tar.

Likewise,	 the	diagram	allows	us	 to	 estimate	 the	 average	causal	 effect	of
Tar	 on	 Cancer.	 To	 do	 this	 we	 can	 block	 the	 back-door	 path	 from	 Tar	 to
Cancer,	 Tar	 	 Smoking	 	 Smoking	 Gene	 	 Cancer,	 by	 adjusting	 for
Smoking.	Our	lessons	from	Chapter	4	come	in	handy:	we	only	need	data	on	a
sufficient	 set	 of	 deconfounders	 (i.e.,	 Smoking).	 Then	 the	 back-door
adjustment	 formula	 will	 give	 us	 P(cancer	 |	 do(tar))	 and	 P(cancer	 |	 do(no
tar)).	 The	 difference	 between	 these	 is	 the	 average	 causal	 effect	 of	 Tar	 on
Cancer.



Now	we	know	the	average	increase	in	the	likelihood	of	tar	deposits	due	to
smoking	 and	 the	 average	 increase	 of	 cancer	 due	 to	 tar	 deposits.	 Can	 we
combine	 these	 somehow	 to	 obtain	 the	 average	 increase	 in	 cancer	 due	 to
smoking?	 Yes,	 we	 can.	 The	 reasoning	 goes	 as	 follows.	 Cancer	 can	 come
about	in	two	ways:	in	the	presence	of	Tar	or	in	the	absence	of	Tar.	If	we	force
a	 person	 to	 smoke,	 then	 the	 probabilities	 of	 these	 two	 states	 are	 P(tar	 |
do(smoking))	 and	 P(no	 tar	 |	 do(no	 smoking)),	 respectively.	 If	 a	 Tar	 state
evolves,	 the	 likelihood	 of	 causing	 Cancer	 is	P(cancer	 |	do(tar)).	 If,	 on	 the
other	hand,	a	No-Tar	state	evolves,	then	it	would	result	in	a	Cancer	likelihood
of	P(cancer	|	do(no	tar)).	We	can	weight	the	two	scenarios	by	their	respective
probabilities	under	do(smoking)	and	in	this	way	compute	the	total	probability
of	cancer	due	 to	smoking.	The	same	argument	holds	 if	we	prevent	a	person
from	smoking,	do(no	smoking).	The	difference	between	the	two	gives	us	the
average	causal	effect	on	cancer	of	smoking	versus	not	smoking.

As	 I	 have	 just	 explained,	 we	 can	 estimate	 each	 of	 the	 do-probabilities
discussed	from	the	data.	That	is,	we	can	write	them	mathematically	in	terms
of	probabilities	that	do	not	involve	the	do-operator.	In	this	way,	mathematics
does	for	us	what	ten	years	of	debate	and	congressional	testimony	could	not:
quantify	 the	causal	 effect	of	 smoking	on	cancer—provided	our	 assumptions
hold,	of	course.

The	process	I	have	just	described,	expressing	P(cancer	 |	do	(smoking))	 in
terms	of	do-free	 probabilities,	 is	 called	 the	 front-door	 adjustment.	 It	 differs
from	the	back-door	adjustment	in	that	we	adjust	for	two	variables	(Smoking
and	Tar)	 instead	of	one,	 and	 these	variables	 lie	on	 the	 front-door	path	 from
Smoking	 to	 Cancer	 rather	 than	 the	 back-door	 path.	 For	 those	 readers	 who
“speak	mathematics,”	I	can’t	resist	showing	you	the	formula	(Equation	7.1),
which	 cannot	 be	 found	 in	 ordinary	 statistics	 textbooks.	 Here	 X	 stands	 for
Smoking,	 Y	 stands	 for	 Cancer,	 Z	 stands	 for	 Tar,	 and	 U	 (which	 is
conspicuously	absent	from	the	formula)	stands	for	the	unobservable	variable,
the	Smoking	Gene.

P(Y	|	do(X))	=	∑z	P(Z	=	z,	X)	∑x	P(Y	|	X	=	x,	Z	=	z)	P(X	=	x)									(7.1)

Readers	with	an	appetite	for	mathematics	might	find	it	interesting	to	compare
this	 to	 the	 formula	 for	 the	back-door	adjustment,	which	 looks	 like	Equation
7.2.

P(Y	|	do(X))	=	∑z	P(Y	|	X,	Z	=	z)	P(Z	=	z)									(7.2)

Even	 for	 readers	 who	 do	 not	 speak	 mathematics,	 we	 can	 make	 several
interesting	points	about	Equation	7.1.	First	and	most	important,	you	don’t	see



U	 (the	 Smoking	 Gene)	 anywhere.	 This	 was	 the	 whole	 point.	 We	 have
successfully	 deconfounded	U	 even	 without	 possessing	 any	 data	 on	 it.	 Any
statistician	 of	 Fisher’s	 generation	would	 have	 seen	 this	 as	 an	 utter	miracle.
Second,	way	back	in	the	Introduction	I	talked	about	an	estimand	as	a	recipe
for	computing	the	quantity	of	interest	in	a	query.	Equations	7.1	and	7.2	are	the
most	complicated	and	interesting	estimands	that	I	will	show	you	in	this	book.
The	left-hand	side	represents	 the	query	“What	 is	 the	effect	of	X	on	Y?”	The
right-hand	side	is	the	estimand,	a	recipe	for	answering	the	query.	Note	that	the
estimand	 contains	 no	do’s,	 only	 see’s,	 represented	 by	 the	 vertical	 bars,	 and
this	means	it	can	be	estimated	from	data.

At	 this	 point,	 I’m	 sure	 that	 some	 readers	 are	 wondering	 how	 close	 this
fictional	 scenario	 is	 to	 reality.	 Could	 the	 smoking-cancer	 controversy	 have
been	 resolved	 by	 one	 observational	 study	 and	 one	 causal	 diagram?	 If	 we
assume	that	Figure	7.1	 accurately	 reflects	 the	 causal	mechanism	 for	 cancer,
the	answer	is	absolutely	yes.	However,	we	now	need	to	discuss	whether	our
assumptions	are	valid	in	the	real	world.

David	Freedman,	a	longtime	friend	and	a	Berkeley	statistician,	took	me	to
task	over	 this	 issue.	He	argued	 that	 the	model	 in	Figure	7.1	 is	unrealistic	 in
three	ways.	First,	if	there	is	a	smoking	gene,	it	might	also	affect	how	the	body
gets	rid	of	foreign	matter	in	the	lungs,	so	that	people	with	the	gene	are	more
vulnerable	 to	 the	 formation	 of	 tar	 deposits	 and	 people	 without	 it	 are	 more
resistant.	Therefore,	he	would	draw	an	arrow	from	Smoking	Gene	to	Tar,	and
in	that	case	the	front-door	formula	would	be	invalid.

Freedman	 also	 considered	 it	 unlikely	 that	 Smoking	 affects	 Cancer	 only
through	Tar.	Certainly	other	mechanisms	could	be	imagined;	perhaps	smoking
produces	 chronic	 inflammation	 that	 leads	 to	 cancer.	 Finally,	 he	 said,	 tar
deposits	 in	 a	 living	 person’s	 lungs	 cannot	 be	 measured	 with	 sufficient
accuracy	anyway—so	an	observational	study	such	as	the	one	I	have	proposed
cannot	be	conducted	in	the	real	world.

I	have	no	quarrel	with	Freedman’s	criticism	 in	 this	particular	example.	 I
am	 not	 a	 cancer	 specialist,	 and	 I	would	 always	 have	 to	 defer	 to	 the	 expert
opinion	 on	 whether	 such	 a	 diagram	 represents	 the	 real-world	 processes
accurately.	In	fact,	one	of	the	major	accomplishments	of	causal	diagrams	is	to
make	the	assumptions	transparent	so	that	 they	can	be	discussed	and	debated
by	experts	and	policy	makers.

However,	the	point	of	my	example	was	not	to	propose	a	new	mechanism
for	the	effect	of	smoking	but	to	demonstrate	how	mathematics,	given	the	right
situation,	 can	 eliminate	 the	 effect	 of	 confounders	 even	without	 data	 on	 the



confounder.	And	the	situation	can	be	clearly	recognized.	Anytime	the	causal
effect	of	X	on	Y	 is	confounded	by	one	set	of	variables	 (C)	and	mediated	by
another	 (M)	 (see	 Figure	 7.2),	 and,	 furthermore,	 the	mediating	 variables	 are
shielded	 from	 the	 effects	 of	 C,	 then	 you	 can	 estimate	 X’s	 effect	 from
observational	data.	Once	 scientists	 are	made	aware	of	 this	 fact,	 they	 should
seek	shielded	mediators	whenever	they	face	incurable	confounders.	As	Louis
Pasteur	said,	“Fortune	favors	the	prepared	mind.”

Fortunately,	 the	 virtues	 of	 front-door	 adjustment	 have	 not	 remained
completely	unappreciated.	In	2014,	Adam	Glynn	and	Konstantin	Kashin,	both
political	 scientists	 at	 Harvard	 (Glynn	 subsequently	 moved	 to	 Emory
University),	wrote	a	prize-winning	paper	that	should	be	required	reading	for
all	 quantitative	 social	 scientists.	They	 applied	 the	new	method	 to	 a	 data	 set
well	 scrutinized	by	social	 scientists,	 called	 the	 Job	Training	Partnership	Act
(JTPA)	Study,	conducted	 from	1987	 to	1989.	As	a	 result	of	 the	1982	JTPA,
the	 Department	 of	 Labor	 created	 a	 job-training	 program	 that,	 among	 other
services,	provided	participants	with	occupational	skills,	job-search	skills,	and
work	 experience.	 It	 collected	 data	 on	 people	who	 applied	 for	 the	 program,
people	who	actually	used	the	services,	and	their	earnings	over	the	subsequent
eighteen	months.	Notably,	 the	 study	 included	 both	 a	 randomized	 controlled
trial	(RCT),	where	people	were	randomly	assigned	to	receive	services	or	not,
and	an	observational	study,	in	which	people	could	choose	for	themselves.

FIGURE	7.2.	The	basic	setup	for	the	front-door	criterion.

Glynn	 and	 Kashin	 did	 not	 draw	 a	 causal	 diagram,	 but	 from	 their
description	of	the	study,	I	would	draw	it	as	shown	in	Figure	7.3.	The	variable
Signed	Up	records	whether	a	person	did	or	did	not	register	for	the	program;
the	variable	Showed	Up	records	whether	the	enrollee	did	or	did	not	actually
use	 the	services.	Obviously	 the	program	can	only	affect	earnings	 if	 the	user
actually	 shows	 up,	 so	 the	 absence	 of	 a	 direct	 arrow	 from	 Signed	 Up	 to
Earnings	is	easy	to	justify.

Glynn	and	Kashin	refrain	from	specifying	the	nature	of	 the	confounders,
but	 I	have	 summed	 them	up	as	Motivation.	Clearly,	 a	person	who	 is	highly
motivated	 to	 increase	 his	 or	 her	 earnings	 is	 more	 likely	 to	 sign	 up.	 That
person	 is	also	more	 likely	 to	earn	more	after	eighteen	months,	 regardless	of
whether	he	or	she	shows	up.	The	goal	of	the	study	is,	of	course,	to	disentangle



the	effect	of	this	confounding	factor	and	find	out	just	how	much	the	services
themselves	are	helping.

FIGURE	7.3.	Causal	diagram	for	the	JTPA	Study.

Comparing	 Figure	 7.2	 to	 Figure	 7.3,	 we	 can	 see	 that	 the	 front-door
criterion	would	apply	if	there	were	no	arrow	from	Motivation	to	Showed	Up,
the	 “shielding”	 I	 mentioned	 earlier.	 In	 many	 cases	 we	 could	 justify	 the
absence	 of	 that	 arrow.	 For	 example,	 if	 the	 services	 were	 only	 offered	 by
appointment	 and	 people	 only	missed	 their	 appointments	 because	 of	 chance
events	unrelated	to	Motivation	(a	bus	strike,	a	sprained	ankle,	etc.),	 then	we
could	erase	that	arrow	and	use	the	front-door	criterion.

Under	 the	 actual	 circumstances	 of	 the	 study,	 where	 the	 services	 were
available	all	the	time,	such	an	argument	is	hard	to	make.	However—and	this
is	where	things	get	really	interesting—Glynn	and	Kashin	tested	out	the	front-
door	 criterion	 anyway.	 We	 might	 think	 of	 this	 as	 a	 sensitivity	 test.	 If	 we
suspect	that	the	middle	arrow	is	weak,	then	the	bias	introduced	by	treating	it
as	absent	may	be	very	small.	Judging	from	their	results,	that	was	the	case.

By	 making	 certain	 reasonable	 assumptions,	 Glynn	 and	 Kashin	 derived
inequalities	 saying	whether	 the	 adjustment	was	 likely	 to	 be	 too	 high	 or	 too
low	and	by	how	much.	Finally,	they	compared	the	front-door	predictions	and
back-door	 predictions	 to	 the	 results	 from	 the	 randomized	 controlled
experiment	 that	was	run	at	 the	same	 time.	The	results	were	 impressive.	The
estimates	 from	 the	 back-door	 criterion	 (controlling	 for	 known	 confounders
like	 Age,	 Race,	 and	 Site)	 were	 wildly	 incorrect,	 differing	 from	 the
experimental	benchmarks	by	hundreds	or	thousands	of	dollars.	This	is	exactly
what	you	would	expect	 to	see	 if	 there	 is	an	unobserved	confounder,	such	as
Motivation.	The	back-door	criterion	cannot	adjust	for	it.

On	the	other	hand,	the	front-door	estimates	succeeded	in	removing	almost
all	 of	 the	Motivation	 effect.	 For	 males,	 the	 front-door	 estimates	 were	 well
within	the	experimental	error	of	the	randomized	controlled	trial,	even	with	the
small	positive	bias	that	Glynn	and	Kashin	predicted.	For	females,	the	results
were	 even	 better:	 The	 front-door	 estimates	 matched	 the	 experimental
benchmark	almost	perfectly,	with	no	apparent	bias.	Glynn	and	Kashin’s	work



gives	both	empirical	and	methodological	proof	that	as	long	as	the	effect	of	C
on	M	 (in	 Figure	 7.2)	 is	weak,	 front-door	 adjustment	 can	 give	 a	 reasonably
good	estimate	of	the	effect	of	X	on	Y.	It	is	much	better	than	not	controlling	for
C.

Glynn	and	Kashin’s	results	show	why	the	front-door	adjustment	is	such	a
powerful	tool:	it	allows	us	to	control	for	confounders	that	we	cannot	observe
(like	 Motivation),	 including	 those	 that	 we	 can’t	 even	 name.	 RCTs	 are
considered	 the	 “gold	 standard”	 of	 causal	 effect	 estimation	 for	 exactly	 the
same	 reason.	 Because	 front-door	 estimates	 do	 the	 same	 thing,	 with	 the
additional	virtue	of	observing	people’s	behavior	 in	 their	own	natural	habitat
instead	 of	 a	 laboratory,	 I	 would	 not	 be	 surprised	 if	 this	 method	 eventually
becomes	a	serious	competitor	to	randomized	controlled	trials.

THE	DO-CALCULUS,	OR	MIND	OVER	MATTER

In	both	the	front-	and	back-door	adjustment	formulas,	the	ultimate	goal	is	to
calculate	the	effect	of	an	intervention,	P(Y	 |	do(X)),	 in	 terms	of	data	such	as
P(Y	 |	X,	A,	B,	Z,…)	 that	do	not	 involve	a	do-operator.	 If	we	are	completely
successful	 at	 eliminating	 the	 do’s,	 then	 we	 can	 use	 observational	 data	 to
estimate	 the	causal	effect,	allowing	us	 to	 leap	from	rung	one	to	rung	two	of
the	Ladder	of	Causation.

The	fact	that	we	were	successful	in	these	two	cases	(front-	and	back-door)
immediately	 raises	 the	 question	 of	 whether	 there	 are	 other	 doors	 through
which	we	 can	 eliminate	 all	 the	 do’s.	 Thinking	more	 generally,	 we	 can	 ask
whether	there	is	some	way	to	decide	in	advance	if	a	given	causal	model	lends
itself	to	such	an	elimination	procedure.	If	so,	we	can	apply	the	procedure	and
find	ourselves	in	possession	of	the	causal	effect,	without	having	to	lift	a	finger
to	 intervene.	 Otherwise,	 we	 would	 at	 least	 know	 that	 the	 assumptions
imbedded	 in	 the	model	 are	 not	 sufficient	 to	 uncover	 the	 causal	 effect	 from
observational	data,	and	no	matter	how	clever	we	are,	there	is	no	escape	from
running	an	interventional	experiment	of	some	kind.

The	 prospect	 of	 making	 these	 determinations	 by	 purely	 mathematical
means	 should	 dazzle	 anybody	 who	 understands	 the	 cost	 and	 difficulty	 of
running	randomized	controlled	trials,	even	when	they	are	physically	feasible
and	legally	permissible.	The	idea	dazzled	me,	too,	in	the	early	1990s,	not	as
an	experimenter	but	as	a	computer	scientist	and	part-time	philosopher.	Surely
one	of	the	most	exhilarating	experiences	you	can	have	as	a	scientist	is	to	sit	at
your	 desk	 and	 realize	 that	 you	 can	 finally	 figure	 out	 what	 is	 possible	 or



impossible	in	the	real	world—especially	if	the	problem	is	important	to	society
and	has	baffled	those	who	have	tried	to	solve	it	before	you.	I	imagine	this	is
how	Hipparchus	 of	Nicaea	 felt	when	he	 discovered	 he	 could	 figure	 out	 the
height	of	a	pyramid	from	its	shadow	on	the	ground,	without	actually	climbing
the	pyramid.	It	was	a	clear	victory	of	mind	over	matter.

Indeed,	the	approach	I	took	was	very	much	inspired	by	the	ancient	Greeks
(including	 Hipparchus)	 and	 their	 invention	 of	 a	 formal	 logical	 system	 for
geometry.	At	the	center	of	the	Greeks’	logic,	we	find	a	set	of	axioms	or	self-
evident	truths,	such	as	“Between	any	two	points	one	can	draw	one	and	only
one	line.”	With	the	help	of	those	axioms,	the	Greeks	could	construct	complex
statements,	 called	 theorems,	 whose	 truth	 is	 far	 from	 evident.	 Take,	 for
instance,	the	statement	that	the	sum	of	the	angles	in	a	triangle	is	180	degrees
(or	 two	 right	 angles),	 regardless	 of	 its	 size	 or	 shape.	 The	 truth	 of	 this
statement	is	not	self-evident	by	any	means;	yet	the	Pythagorean	philosophers
of	the	fifth	century	BC	were	able	to	prove	its	universal	truth	using	those	self-
evident	axioms	as	building	blocks.

If	you	remember	your	high	school	geometry,	even	just	 the	gist	of	 it,	you
will	 recall	 that	 proofs	 of	 theorems	 invariably	 consist	 of	 auxiliary
constructions:	 for	 example,	 drawing	 a	 line	parallel	 to	 an	 edge	of	 a	 triangle,
marking	certain	angles	as	equal,	drawing	a	circle	with	a	given	segment	as	its
radius,	and	so	on.	These	auxiliary	constructions	can	be	regarded	as	temporary
mathematical	 sentences	 that	make	 assertions	 (or	 claims)	 about	properties	 of
the	figure	drawn.	Each	new	construction	is	licensed	by	the	previous	ones,	as
well	 as	 by	 the	 axioms	 of	 geometry	 and	 perhaps	 some	 already	 derived
theorems.	 For	 example,	 drawing	 a	 line	 parallel	 to	 one	 edge	 of	 a	 triangle	 is
licensed	by	Euclid’s	fifth	axiom,	that	it	is	possible	to	draw	one	and	only	one
parallel	to	a	given	line	from	a	point	outside	that	line.	The	act	of	drawing	any
of	 these	 auxiliary	 constructions	 is	 just	 a	mechanical	 “symbol	manipulation”
operation;	 it	 takes	 the	 sentence	 previously	 written	 (or	 picture	 previously
drawn)	and	rewrites	it	in	a	new	format,	whenever	the	rewriting	is	licensed	by
the	axioms.	Euclid’s	greatness	was	to	identify	a	short	 list	of	five	elementary
axioms,	from	which	all	other	true	geometric	statements	can	be	derived.

Now	let	us	return	to	our	central	question	of	when	a	model	can	replace	an
experiment,	 or	 when	 a	 “do”	 quantity	 can	 be	 reduced	 to	 a	 “see”	 quantity.
Inspired	by	 the	ancient	Greek	geometers,	we	want	 to	 reduce	 the	problem	to
symbol	manipulation	 and	 in	 this	way	wrest	 causality	 from	Mount	Olympus
and	make	it	available	to	the	average	researcher.

First,	 let	 us	 rephrase	 the	 task	 of	 finding	 the	 effect	 of	X	 on	Y	 using	 the



language	 of	 proofs,	 axioms,	 and	 auxiliary	 constructions,	 the	 language	 of
Euclid	 and	Pythagoras.	We	 start	with	our	 target	 sentence,	P(Y	 |	do(X)).	 Our
task	will	be	complete	if	we	can	succeed	in	eliminating	the	do-operator	from	it,
leaving	only	classical	probability	expressions,	like	P(Y	|	X)	or	P(Y	|	X,	Z,	W).
We	cannot,	of	course,	manipulate	our	target	expression	at	will;	the	operations
must	conform	to	what	do(X)	means	as	a	physical	intervention.	Thus,	we	must
pass	 the	 expression	 through	 a	 sequence	 of	 legitimate	 manipulations,	 each
licensed	by	the	axioms	and	the	assumptions	of	our	model.	The	manipulations
should	 preserve	 the	meaning	 of	 the	manipulated	 expression,	 only	 changing
the	 format	 it	 is	 written	 in.	 An	 example	 of	 a	 “meaning	 preserving”
transformation	is	the	algebraic	transformation	that	turns	y	=	ax	+	b	into	ax	=	y
–	b.	The	relationship	between	x	and	y	remains	intact;	only	the	format	changes.

We	 are	 already	 familiar	 with	 some	 “legitimate”	 transformations	 on	 do-
expressions.	For	example,	Rule	1	says	when	we	observe	a	variable	W	that	is
irrelevant	to	Y	(possibly	conditional	on	other	variables	Z),	then	the	probability
distribution	of	Y	will	not	change.	For	example,	in	Chapter	3	we	saw	that	 the
variable	Fire	 is	 irrelevant	 to	Alarm	once	we	know	 the	 state	of	 the	mediator
(Smoke).	 This	 assertion	 of	 irrelevance	 translates	 into	 a	 symbolic
manipulation:

P(Y	|	do(X),	Z,	W)	=	P(Y	|	do(X),	Z)

The	stated	equation	holds	provided	that	the	variable	set	Z	blocks	all	the	paths
from	W	 to	 Y	 after	 we	 have	 deleted	 all	 the	 arrows	 leading	 into	 X.	 In	 the
example	 of	 Fire	 	 Smoke	 	Alarm,	we	 have	W	 =	 Fire,	Z	 =	 Smoke,	 Y	 =
Alarm,	and	Z	blocks	all	the	paths	from	W	to	Y.	(In	this	case	we	do	not	have	a
variable	X.)

Another	 legitimate	 transformation	 is	 familiar	 to	 us	 from	 our	 back-door
discussion.	We	know	 that	 if	 a	 set	Z	 of	 variables	 blocks	 all	 back-door	 paths
from	X	 to	Y,	 then	 conditional	 on	Z,	 do(X)	 is	 equivalent	 to	 see(X).	We	 can,
therefore,	write

P(Y	|	do(X),	Z)	=	P(Y	|	X,	Z)

if	Z	satisfies	the	back-door	criterion.	We	adopt	this	as	Rule	2	of	our	axiomatic
system.	While	 this	 is	 perhaps	 less	 self-evident	 than	Rule	 1,	 in	 the	 simplest
cases	it	is	Hans	Reichenbach’s	common-cause	principle,	amended	so	that	we
won’t	mistake	colliders	 for	 confounders.	 In	other	words,	we	are	 saying	 that
after	 we	 have	 controlled	 for	 a	 sufficient	 deconfounding	 set,	 any	 remaining
correlation	is	a	genuine	causal	effect.

Rule	3	is	quite	simple:	it	essentially	says	that	we	can	remove	do(X)	from



P(Y	|	do(X))	in	any	case	where	there	are	no	causal	paths	from	X	to	Y.	That	is,

P(Y	|	do(X))	=	P(Y)

if	 there	 is	 no	 path	 from	X	 to	Y	 with	 only	 forward-directed	 arrows.	We	 can
paraphrase	this	rule	is	follows:	if	we	do	something	that	does	not	affect	Y,	then
the	probability	distribution	of	Y	will	not	change.	Aside	from	being	just	as	self-
evident	as	Euclid’s	axioms,	Rules	1	 to	3	can	also	be	proven	mathematically
using	 our	 arrow-deleting	 definition	 of	 the	 do-operator	 and	 basic	 laws	 of
probability.

Note	 that	 Rules	 1	 and	 2	 include	 conditional	 probabilities	 involving
auxiliary	variables	Z	other	than	X	and	Y.	These	variables	can	be	thought	of	as
a	context	in	which	the	probability	is	being	computed.	Sometimes	the	presence
of	 this	 context	 itself	 licenses	 the	 transformation.	 Rule	 3	 may	 also	 have
auxiliary	variables,	but	I	omitted	them	for	simplicity.

Note	 that	 each	 rule	 has	 a	 simple	 syntactic	 interpretation.	Rule	 1	 permits
the	addition	or	deletion	of	observations.	Rule	2	permits	the	replacement	of	an
intervention	with	an	observation,	or	vice	versa.	Rule	3	permits	the	deletion	or
addition	 of	 interventions.	 All	 of	 these	 permits	 are	 issued	 under	 appropriate
conditions,	which	have	 to	be	verified	 in	any	particular	case	 from	 the	causal
diagram.

We	are	ready	now	to	demonstrate	how	Rules	1	to	3	allow	us	to	transform
one	formula	into	another	until,	if	we	are	smart,	we	obtain	an	expression	to	our
liking.	 Although	 it’s	 a	 bit	 elaborate,	 I	 think	 that	 nothing	 can	 substitute	 for
actually	 showing	 you	 how	 the	 front-door	 formula	 is	 derived	 using	 a
successive	 application	 of	 the	 rules	 of	 do-calculus	 (Figure	 7.4).	 You	 do	 not
need	to	follow	all	the	steps,	but	I	am	showing	you	the	derivation	to	give	you
the	flavor	of	do-calculus.	We	begin	the	journey	with	a	target	expression	P(Y	|
do(X)).	We	 introduce	auxiliary	variables	and	 transform	the	 target	expression
into	 a	 do-free	 expression	 that	 coincides,	 of	 course,	 with	 the	 front-door
adjustment	formula.	Each	step	of	the	argument	gets	its	license	from	the	causal
diagram	that	relates	X,	Y,	and	the	auxiliary	variables	or,	in	several	cases,	from
subdiagrams	that	have	had	arrows	erased	to	account	for	interventions.	These
licenses	are	displayed	on	the	right-hand	side.

I	 feel	 a	 special	 attachment	 to	 the	 do-calculus.	 With	 these	 three	 humble
rules	 I	was	 able	 to	 derive	 the	 front-door	 formula.	 This	was	 the	 first	 causal
effect	 estimated	by	means	other	 than	control	 for	 confounders.	 I	believed	no
one	could	do	this	without	the	do-calculus,	so	I	presented	it	as	a	challenge	in	a
statistics	seminar	at	Berkeley	in	1993	and	even	offered	a	$100	prize	to	anyone



who	could	solve	it.	Paul	Holland,	who	attended	the	seminar,	wrote	that	he	had
assigned	the	problem	as	a	class	project	and	would	send	me	the	solution	when
ripe.	 (Colleagues	 tell	 me	 that	 he	 eventually	 presented	 a	 long	 solution	 at	 a
conference	in	1995,	and	I	may	owe	him	$100	if	I	could	only	find	his	proof.)
Economists	 James	 Heckman	 and	 Rodrigo	 Pinto	 made	 the	 next	 attempt	 to
prove	the	front-door	formula	using	“standard	tools”	in	2015.	They	succeeded,
albeit	at	the	cost	of	eight	pages	of	hard	labor.

FIGURE	7.4.	Derivation	of	the	front-door	adjustment	formula	from	the	rules	of	do-

calculus.

In	a	 restaurant	 the	evening	before	 the	 talk,	 I	had	written	 the	proof	 (very
much	like	the	one	in	Figure	7.4)	on	a	napkin	for	David	Freedman.	He	wrote
me	 later	 to	 say	 that	 he	 had	 lost	 the	 napkin.	 He	 could	 not	 reconstruct	 the
argument	and	asked	if	I	had	kept	a	copy.	The	next	day,	Jamie	Robins	wrote	to
me	from	Harvard,	saying	that	he	had	heard	about	the	“napkin	problem”	from
Freedman,	and	he	straightaway	offered	to	fly	to	California	to	check	the	proof
with	me.	I	was	thrilled	to	share	with	Robins	the	secrets	of	the	do-calculus,	and
I	 believe	 that	 his	 trip	 to	 Los	 Angeles	 that	 year	 has	 been	 the	 key	 to	 his
enthusiastic	 acceptance	 of	 causal	 diagrams.	 Through	 his	 and	 Sander
Greenland’s	 influence,	 diagrams	 have	 become	 a	 second	 language	 for
epidemiologists.	This	explains	why	I	am	so	fond	of	the	“napkin	problem.”

The	 front-door	 adjustment	 formula	 was	 a	 delightful	 surprise	 and	 an
indication	that	do-calculus	had	something	important	to	offer.	However,	at	this
point	 I	 still	 wondered	whether	 the	 three	 rules	 of	 do-calculus	 were	 enough.
Was	 it	 possible	 that	 we	 had	missed	 a	 fourth	 rule	 that	 would	 help	 us	 solve
problems	that	are	unsolvable	with	only	three?

In	1994,	when	I	first	proposed	the	do-calculus,	I	selected	these	three	rules



because	they	were	sufficient	in	any	case	that	I	knew	of.	I	had	no	idea	whether,
like	Ariadne’s	thread,	they	would	always	lead	me	out	of	the	maze,	or	I	would
someday	 encounter	 a	 maze	 of	 such	 fiendish	 complexity	 that	 I	 could	 not
escape.	Of	course,	I	hoped	for	the	best.	I	conjectured	that	whenever	a	causal
effect	 is	 estimable	 from	 data,	 a	 sequence	 of	 steps	 using	 these	 three	 rules
would	eliminate	the	do-operator.	But	I	could	not	prove	it.

This	type	of	problem	has	many	precedents	in	mathematics	and	logic.	The
property	 is	 usually	 called	 “completeness”	 in	 mathematical	 logic;	 an	 axiom
system	 that	 is	 complete	 has	 the	 property	 that	 the	 axioms	 suffice	 to	 derive
every	 true	 statement	 in	 that	 language.	 Some	 very	 good	 axiom	 systems	 are
incomplete:	 for	 instance,	 Philip	 Dawid’s	 axioms	 describing	 conditional
independence	in	probability	theory.

In	 this	 modern-day	 labyrinth	 tale,	 two	 groups	 of	 researchers	 played	 the
role	of	Ariadne	to	my	wandering	Theseus:	Yiming	Huang	and	Marco	Valtorta
at	the	University	of	South	Carolina	and	my	own	student,	Ilya	Shpitser,	at	the
University	 of	 California,	 Los	Angeles	 (UCLA).	 Both	 groups	 independently
and	 simultaneously	 proved	 that	 Rules	 1	 to	 3	 suffice	 to	 get	 out	 of	 any	 do-
labyrinth	 that	 has	 an	 exit.	 I	 am	 not	 sure	 whether	 the	 world	 was	 waiting
breathlessly	 for	 their	 completeness	 result,	 because	by	 then	most	 researchers
had	 become	 content	 with	 just	 using	 the	 front-	 and	 back-door	 criteria.	 Both
teams	 were,	 however,	 recognized	 with	 best	 student	 paper	 awards	 at	 the
Uncertainty	in	Artificial	Intelligence	conference	in	2006.

I	confess	that	I	was	the	one	waiting	breathlessly	for	this	result.	It	tells	us
that	if	we	cannot	find	a	way	to	estimate	P(Y	|	do(X))	from	Rules	1	to	3,	then	a
solution	does	not	exist.	 In	 that	case,	we	know	 that	 there	 is	no	alternative	 to
conducting	 a	 randomized	 controlled	 trial.	 It	 further	 tells	 us	what	 additional
assumptions	or	experiments	might	make	the	causal	effect	estimable.

Before	 declaring	 total	 victory,	we	 should	 discuss	 one	 issue	with	 the	do-
calculus.	Like	any	other	calculus,	it	enables	the	construction	of	a	proof,	but	it
does	not	help	us	find	one.	It	is	an	excellent	verifier	of	a	solution	but	not	such
a	good	searcher	for	one.	If	you	know	the	correct	sequence	of	transformations,
it	is	easy	to	demonstrate	to	others	(who	are	familiar	with	Rules	1	to	3)	that	the
do-operator	 can	 be	 eliminated.	 However,	 if	 you	 do	 not	 know	 the	 correct
sequence,	it	is	not	easy	to	discover	it,	or	even	to	determine	whether	one	exists.
Using	the	analogy	with	geometrical	proofs,	we	need	to	decide	which	auxiliary
construction	to	try	next.	A	circle	around	point	A?	A	line	parallel	to	AB?	The
number	 of	 possibilities	 is	 limitless,	 and	 the	 axioms	 themselves	 provide	 no
guidance	about	what	to	try	next.	My	high	school	geometry	teacher	used	to	say



that	you	need	“mathematical	eyeglasses.”

In	 mathematical	 logic,	 this	 is	 known	 as	 the	 “decision	 problem.”	 Many
logical	systems	are	plagued	with	intractable	decision	problems.	For	instance,
given	a	pile	of	dominos	of	various	sizes,	we	have	no	tractable	way	to	decide	if
we	can	arrange	them	to	fill	a	square	of	a	given	size.	But	once	an	arrangement
is	proposed,	it	takes	no	time	at	all	to	verify	whether	it	constitutes	a	solution.

Luckily	 (again)	 for	 do-calculus,	 the	 decision	 problem	 turns	 out	 to	 be
manageable.	 Ilya	 Shpitser,	 building	 on	 earlier	 work	 by	 one	 of	 my	 other
students,	 Jin	 Tian,	 found	 an	 algorithm	 that	 decides	 if	 a	 solution	 exists	 in
“polynomial	 time.”	 This	 is	 a	 somewhat	 technical	 term,	 but	 continuing	 our
analogy	with	 solving	 a	maze,	 it	means	 that	we	 have	 a	much	more	 efficient
way	out	of	the	labyrinth	than	hunting	at	random	through	all	possible	paths.

Shpitser’s	 algorithm	 for	 finding	 each	 and	 every	 causal	 effect	 does	 not
eliminate	the	need	for	the	do-calculus.	In	fact,	we	need	it	even	more,	and	for
several	 independent	 reasons.	 First,	 we	 need	 it	 in	 order	 to	 go	 beyond
observational	 studies.	 Suppose	 that	 worst	 comes	 to	 worst,	 and	 our	 causal
model	 does	 not	 permit	 estimation	 of	 the	 causal	 effect	 P(Y	 |	 do(X))	 from
observations	alone.	Perhaps	we	also	cannot	conduct	a	randomized	experiment
with	 random	 assignment	 of	 X.	 A	 clever	 researcher	 might	 ask	 whether	 we
might	estimate	P(Y	|	do(X))	by	randomizing	some	other	variable,	say	Z,	that	is
more	accessible	to	control	than	X.	For	instance,	if	we	want	to	assess	the	effect
of	cholesterol	levels	(X)	on	heart	disease	(Y),	we	might	be	able	to	manipulate
the	subjects’	diet	(Z)	instead	of	exercising	direct	control	over	the	cholesterol
levels	in	their	blood.

We	then	ask	if	we	can	find	such	a	surrogate	Z	that	will	enable	us	to	answer
the	causal	question.	 In	 the	world	of	do-calculus,	 the	question	 is	whether	we
can	 find	a	Z	 such	 that	we	 can	 transform	P(Y	 |	do(X))	 into	 an	 expression	 in
which	 the	 variable	 Z,	 but	 not	 X,	 is	 subjected	 to	 a	 do-operator.	 This	 is	 a
completely	different	problem	not	covered	by	Shpitser’s	algorithm.	Luckily,	it
has	 a	 complete	 answer	 too,	 with	 a	 new	 algorithm	 discovered	 by	 Elias
Bareinboim	at	my	lab	in	2012.	Even	more	problems	of	this	sort	arise	when	we
consider	problems	of	transportability	or	external	validity—assessing	whether
an	 experimental	 result	 will	 still	 be	 valid	 when	 transported	 to	 a	 different
environment	 that	may	differ	 in	several	key	ways	from	the	one	studied.	This
more	 ambitious	 set	 of	 questions	 touches	 on	 the	 heart	 of	 scientific
methodology,	for	there	is	no	science	without	generalization.	Yet	the	question
of	generalization	has	been	lingering	for	at	least	two	centuries,	without	an	iota
of	progress.	The	tools	for	producing	a	solution	were	simply	not	available.	In



2015,	 Bareinboim	 and	 I	 presented	 a	 paper	 at	 the	 National	 Academy	 of
Sciences	 that	 solves	 the	 problem,	 provided	 that	 you	 can	 express	 your
assumptions	about	both	environments	with	a	causal	diagram.	In	this	case	the
rules	of	do-calculus	provide	a	systematic	method	to	determine	whether	causal
effects	 found	 in	 the	 study	 environment	 can	 help	 us	 estimate	 effects	 in	 the
intended	target	environment.

Yet	another	reason	that	the	do-calculus	remains	important	is	transparency.
As	 I	wrote	 this	 chapter,	Bareinboim	 (now	a	 professor	 at	Purdue)	 sent	me	 a
new	puzzle:	a	diagram	with	just	four	observed	variables,	X,	Y,	Z,	and	W,	and
two	 unobservable	 variables,	U1,	U2	 (see	 Figure	 7.5).	He	 challenged	 me	 to
figure	out	if	the	effect	of	X	on	Y	was	estimable.	There	was	no	way	to	block
the	 back-door	 paths	 and	 no	 front-door	 condition.	 I	 tried	 all	 my	 favorite
shortcuts	and	my	otherwise	trustworthy	intuitive	arguments,	both	pro	and	con,
and	I	couldn’t	see	how	to	do	it.	I	could	not	find	a	way	out	of	the	maze.	But	as
soon	as	Bareinboim	whispered	to	me,	“Try	the	do-calculus,”	the	answer	came
shining	 through	 like	 a	 baby’s	 smile.	 Every	 step	 was	 clear	 and	meaningful.
This	is	now	the	simplest	model	known	to	us	in	which	the	causal	effect	needs
to	 be	 estimated	 by	 a	 method	 that	 goes	 beyond	 the	 front-	 and	 back-door
adjustments.

FIGURE	7.5.	A	new	napkin	problem?

In	order	not	to	leave	the	reader	with	the	impression	that	the	do-calculus	is
good	only	for	theory	and	to	serve	as	a	recreational	brainteaser,	I	will	end	this
section	 with	 a	 practical	 problem	 recently	 brought	 up	 by	 two	 leading
statisticians,	Nanny	Wermuth	and	David	Cox.	It	demonstrates	how	a	friendly
whisper,	 “Try	 the	 do-calculus,”	 can	 help	 expert	 statisticians	 solve	 difficult
practical	problems.

Around	 2005,	Wermuth	 and	Cox	 became	 interested	 in	 a	 problem	 called
“sequential	decisions”	or	“time-varying	 treatments,”	which	are	common,	 for
example,	 in	 the	 treatment	 of	 AIDS.	 Typically	 treatments	 are	 administered
over	a	length	of	time,	and	in	each	time	period	physicians	vary	the	strength	and
dosage	 of	 a	 follow-up	 treatment	 according	 to	 the	 patient’s	 condition.	 The
patient’s	condition,	on	the	other	hand,	is	influenced	by	the	treatments	taken	in
the	past.	We	thus	end	up	with	a	scenario	like	the	one	depicted	in	Figure	7.6,
showing	 two	 time	 periods	 and	 two	 treatments.	 The	 first	 treatment	 is
randomized	(X),	and	the	second	(Z)	is	given	in	response	to	an	observation	(W)



that	depends	on	X.	Given	data	collected	under	such	a	treatment	regime,	Cox
and	Wermuth’s	task	was	to	predict	the	effect	of	X	on	the	outcome	Y,	assuming
that	 they	 were	 to	 keep	 Z	 constant	 through	 time,	 independent	 of	 the
observation	W.

FIGURE	7.6.	Wermuth	and	Cox’s	example	of	a	sequential	treatment.

Jamie	Robins	first	brought	the	problem	of	time-varying	treatments	to	my
attention	in	1994,	and	with	the	help	of	do-calculus,	we	were	able	to	derive	a
general	 solution	 invoking	 a	 sequential	 version	 of	 the	 back-door	 adjustment
formula.	 Wermuth	 and	 Cox,	 unaware	 of	 this	 method,	 called	 their	 problem
“indirect	 confounding”	 and	 published	 three	 papers	 on	 its	 analysis	 (2008,
2014,	 and	 2015).	 Unable	 to	 solve	 it	 in	 general,	 they	 resorted	 to	 a	 linear
approximation,	 and	even	 in	 the	 linear	 case	 they	 found	 it	 difficult	 to	handle,
because	it	is	not	solvable	by	standard	regression	methods.

Fortunately,	when	 a	muse	whispered	 in	my	 ear,	 “Try	 the	do-calculus,”	 I
noticed	 that	 their	 problem	 can	 be	 solved	 in	 three	 lines	 of	 calculation.	 The
logic	goes	as	follows.	Our	target	quantity	is	P(Y	|	do(X),	do(Z)),	while	the	data
we	have	available	to	us	are	of	the	form	P(Y	|	do(X),	Z,	W)	and	P(W	 |	do(X)).
These	 reflect	 the	 fact	 that,	 in	 the	 study	 from	which	we	 have	 data,	Z	 is	 not
controlled	externally	but	follows	W	through	some	(unknown)	protocol.	Thus,
our	task	is	to	transform	the	target	expression	to	another	expression,	reflecting
the	study	conditions	in	which	the	do-operator	applies	only	to	X	and	not	to	Z.	It
so	 happens	 that	 a	 single	 application	 of	 the	 three	 rules	 of	 do-calculus	 can
accomplish	this.	The	moral	of	the	story	is	nothing	but	a	deep	appreciation	of
the	 power	 of	 mathematics	 to	 solve	 difficult	 problems,	 which	 occasionally
entail	practical	consequences.

THE	TAPESTRY	OF	SCIENCE,	OR	THE	HIDDEN	PLAYERS
IN	THE	DO-ORCHESTRA



I’ve	 already	 mentioned	 the	 role	 of	 some	 of	 my	 students	 in	 weaving	 this
beautiful	 do-calculus	 tapestry.	 Like	 any	 tapestry,	 it	 gives	 a	 sense	 of
completeness	that	may	conceal	how	painstaking	making	it	was	and	how	many
hands	contributed	to	the	process.	In	this	case,	it	took	more	than	twenty	years
and	contributions	from	several	students	and	colleagues.

The	first	was	Thomas	Verma,	whom	I	met	when	he	was	a	sixteen-year-old
boy.	His	father	brought	him	to	my	office	one	day	and	said,	essentially,	“Give
him	something	 to	do.”	He	was	 too	 talented	 for	any	of	his	high	school	math
teachers	 to	keep	him	interested.	What	he	eventually	accomplished	was	 truly
amazing.	 Verma	 finally	 proved	 what	 became	 known	 as	 the	 d-separation
property	(i.e.,	the	fact	that	you	can	use	the	rules	of	path	blocking	to	determine
which	independencies	should	hold	in	the	data).	Astonishingly,	he	told	me	that
he	proved	the	d-separation	property	thinking	it	was	a	homework	problem,	not
an	unsolved	conjecture!	Sometimes	 it	pays	 to	be	young	and	naive.	You	can
still	see	his	 legacy	in	Rule	1	of	 the	do-calculus	and	in	any	imprint	 that	path
blocking	leaves	on	rung	one	of	the	Ladder	of	Causation.

The	 power	 of	 Verma’s	 proof	 would	 have	 remained	 only	 partially
appreciated	 without	 a	 complementary	 result	 to	 show	 that	 it	 cannot	 be
improved.	That	 is,	no	other	 independencies	are	 implied	by	a	causal	diagram
except	 those	 revealed	 through	 path	 blocking.	 This	 step	 was	 completed	 by
another	 student,	 Dan	 Geiger.	 He	 had	 switched	 to	 my	 research	 lab	 from
another	group	at	UCLA,	after	I	promised	to	give	him	an	“instant	PhD”	if	he
could	prove	 two	 theorems.	He	did,	 and	 I	did!	He	 is	now	Dean	of	computer
science	at	the	Technion	in	Israel,	my	alma	mater.

But	Dan	was	not	the	only	student	I	raided	from	another	department.	One
day	in	1997,	as	I	was	getting	dressed	in	the	locker	room	of	the	UCLA	pool,	I
struck	 up	 a	 conversation	with	 a	Chinese	 fellow	 next	 to	me.	He	was	 a	 PhD
student	in	physics,	and,	as	was	my	usual	habit	at	the	time,	I	tried	to	convince
him	to	switch	over	to	artificial	intelligence,	where	the	action	was.	He	was	not
completely	convinced,	but	the	very	next	day	I	received	an	email	from	a	friend
of	his,	Jin	Tian,	saying	that	he	would	like	to	switch	from	physics	to	computer
science	and	did	I	have	a	challenging	summer	project	for	him?	Two	days	later,
he	was	working	in	my	lab.

Four	 years	 later,	 in	 April	 2001,	 he	 stunned	 the	 world	 with	 a	 simple
graphical	criterion	that	generalizes	the	front	door,	the	back	door,	and	all	doors
we	could	think	of	at	the	time.	I	recall	presenting	Tian’s	criterion	at	a	Santa	Fe
conference.	 One	 by	 one,	 leaders	 in	 the	 research	 community	 stared	 at	 my
poster	and	shook	their	heads	in	disbelief.	How	could	such	a	simple	criterion



work	for	all	diagrams?

Tian	 (now	 a	 professor	 at	 Iowa	State	University)	 came	 to	 our	 lab	with	 a
style	of	thinking	that	was	foreign	to	us	then,	in	the	1990s.	Our	conversations
were	 always	 loaded	 with	 wild	 metaphors	 and	 half-baked	 conjectures.	 But
Tian	would	never	utter	a	word	unless	it	was	rigorous,	proven,	and	baked	five
times	 over.	 The	mixture	 of	 the	 two	 styles	 proved	 its	merit.	 Tian’s	method,
called	 c-decomposition,	 enabled	 Ilya	 Shpitser	 to	 develop	 his	 complete
algorithm	for	the	do-calculus.	The	moral:	never	underestimate	the	power	of	a
locker-room	conversation!

Ilya	 Shpitser	 came	 in	 at	 the	 end	 of	 the	 ten-year	 battle	 to	 understand
interventions.	He	 arrived	 during	 a	 very	 difficult	 period,	when	 I	 had	 to	 take
time	off	to	set	up	a	foundation	in	honor	of	my	son,	Daniel,	a	victim	of	anti-
Western	terrorism.	I	have	always	expected	my	students	to	be	self-reliant,	but
for	my	students	at	that	time,	this	expectation	was	pushed	to	the	extreme.	They
gave	me	the	best	of	all	possible	gifts	by	putting	the	final	but	crucial	touches
on	the	tapestry	of	do-calculus,	which	I	could	not	have	done	myself.	In	fact,	I
tried	to	discourage	Ilya	from	trying	to	prove	the	completeness	of	do-calculus.
Completeness	 proofs	 are	 notoriously	 difficult	 and	 are	 best	 avoided	 by	 any
student	who	aims	 to	 finish	his	PhD	on	 time.	Luckily,	 Ilya	did	 it	 behind	my
back.

Colleagues,	 too,	 exert	 a	 profound	 effect	 on	 your	 thinking	 at	 crucial
moments.	 Peter	 Spirtes,	 a	 professor	 of	 philosophy	 at	 Carnegie-Mellon,
preceded	 me	 in	 the	 network	 approach	 to	 causality,	 and	 his	 influence	 was
pivotal.	At	a	lecture	of	his	in	Uppsala,	Sweden,	I	first	learned	that	performing
interventions	could	be	 thought	of	as	deleting	arrows	from	a	causal	diagram.
Until	 then	 I	 had	 been	 laboring	 under	 the	 same	 burden	 as	 generations	 of
statisticians,	 trying	 to	 think	 of	 causality	 in	 terms	 of	 only	 one	 diagram
representing	one	static	probability	distribution.

The	idea	of	arrow	deletion	was	not	entirely	Spirtes’s,	either.	In	1960,	two
Swedish	 economists,	 Robert	 Strotz	 and	Herman	Wold,	 proposed	 essentially
the	 same	 idea.	 In	 the	world	of	 economics	 at	 the	 time,	 diagrams	were	never
used;	 instead,	 economists	 relied	 on	 structural	 equation	 models,	 which	 are
Sewall	Wright’s	 equations	 without	 the	 diagrams.	 Arrow	 deletion	 in	 a	 path
diagram	corresponds	to	deleting	an	equation	from	a	structural	equation	model.
So,	in	a	rough	sense,	Strotz	and	Wold	had	the	idea	first,	unless	we	want	to	go
even	 further	 back	 in	 history:	 they	 were	 preceded	 by	 Trygve	 Haavelmo	 (a
Norwegian	economist	and	Nobel	 laureate),	who	 in	1943	advocated	equation
modification	to	represent	interventions.



Nevertheless,	 Spirtes’s	 translation	 of	 equation	 deletion	 into	 the	world	 of
causal	diagrams	unleashed	an	avalanche	of	new	insights	and	new	results.	The
back-door	criterion	was	one	of	the	first	beneficiaries	of	the	translation,	while
the	 do-calculus	 came	 second.	 The	 avalanche,	 however,	 is	 not	 yet	 over.
Advances	in	such	areas	as	counterfactuals,	generalizability,	missing	data,	and
machine	learning	are	still	coming	up.

If	 I	 were	 less	 modest,	 I	 would	 close	 here	 with	 Isaac	 Newton’s	 famous
saying	about	“standing	on	the	shoulders	of	giants.”	But	given	who	I	am,	I	am
tempted	 to	 quote	 from	 the	 Mishnah	 instead:	 “Harbe	 lamadeti	 mirabotai
um’haverai	 yoter	 mehem,	 umitalmidai	 yoter	 mikulam”—that	 is,	 “I	 have
learned	much	from	my	teachers,	and	more	so	from	my	colleagues,	and	most
of	all	from	my	students”	(Taanit	7a).	The	do-operator	and	do-calculus	would
not	exist	as	 they	do	 today	without	 the	contributions	of	Verma,	Geiger,	Tian,
and	Shpitser,	among	others.

THE	CURIOUS	CASE(S)	OF	DR.	SNOW

In	1853	and	1854,	England	was	in	the	grips	of	a	cholera	epidemic.	In	that	era,
cholera	 was	 as	 terrifying	 as	 Ebola	 is	 today;	 a	 healthy	 person	 who	 drinks
cholera-tainted	water	can	die	within	 twenty-four	hours.	We	know	today	 that
cholera	is	caused	by	a	bacterium	that	attacks	the	intestines.	It	spreads	through
the	“rice	water”	diarrhea	of	its	victims,	who	excrete	this	diarrhea	in	copious
amounts	before	dying.

But	 in	 1853,	 disease-causing	 germs	 had	 never	 yet	 been	 seen	 under	 a
microscope	for	any	illness,	let	alone	cholera.	The	prevailing	wisdom	held	that
a	“miasma”	of	unhealthy	air	caused	cholera,	a	theory	seemingly	supported	by
the	fact	that	the	epidemic	hit	harder	in	the	poorer	sections	of	London,	where
sanitation	was	worse.

Dr.	 John	 Snow,	 a	 physician	 who	 had	 taken	 care	 of	 cholera	 victims	 for
more	 than	 twenty	 years,	 was	 always	 skeptical	 of	 the	 miasma	 theory.	 He
argued,	 sensibly,	 that	 since	 the	 symptoms	 manifested	 themselves	 in	 the
intestinal	tract,	the	body	must	first	come	into	contact	with	the	pathogen	there.
But	because	he	couldn’t	see	the	culprit,	he	had	no	way	to	prove	this—until	the
epidemic	of	1854.

The	John	Snow	story	has	 two	chapters,	one	much	more	 famous	 than	 the
other.	In	what	we	could	call	the	“Hollywood”	version,	he	painstakingly	goes
from	house	to	house,	recording	where	victims	of	cholera	died,	and	notices	a



cluster	of	dozens	of	victims	near	a	pump	in	Broad	Street.	Talking	with	people
who	live	in	the	area,	he	discovers	that	almost	all	the	victims	had	drawn	their
water	from	that	particular	pump.	He	even	learns	of	a	fatal	case	that	occurred
far	away,	in	Hampstead,	to	a	woman	who	liked	the	taste	of	the	water	from	the
Broad	Street	pump.	She	and	her	niece	drank	the	water	from	Broad	Street	and
died,	while	 no	 one	 else	 in	 her	 area	 even	 got	 sick.	 Putting	 all	 this	 evidence
together,	Snow	asks	the	local	authorities	to	remove	the	pump	handle,	and	on
September	8	they	agree.	As	Snow’s	biographer	wrote,	“The	pump-handle	was
removed,	and	the	plague	was	stayed.”

All	of	this	makes	a	wonderful	story.	Nowadays	a	John	Snow	Society	even
reenacts	the	removal	of	the	famous	pump	handle	every	year.	Yet,	in	truth,	the
removal	 of	 the	 pump	 handle	 hardly	 made	 a	 dent	 in	 the	 citywide	 cholera
epidemic,	which	went	on	to	claim	nearly	3,000	lives.

In	the	non-Hollywood	chapter	of	the	story,	we	again	see	Dr.	Snow	walking
the	 streets	 of	 London,	 but	 this	 time	 his	 real	 object	 is	 to	 find	 out	 where
Londoners	get	their	water.	There	were	two	main	water	companies	at	the	time:
the	Southwark	and	Vauxhall	Company	and	 the	Lambeth	Company.	The	key
difference	between	the	two,	as	Snow	knew,	was	that	the	former	drew	its	water
from	the	area	of	 the	London	Bridge,	which	was	downstream	from	London’s
sewers.	The	 latter	had	moved	 its	water	 intake	several	years	earlier	so	 that	 it
would	 be	 upstream	of	 the	 sewers.	Thus,	 Southwark	 customers	were	 getting
water	tainted	by	the	excrement	of	cholera	victims.	Lambeth	customers,	on	the
other	hand,	were	getting	uncontaminated	water.	(None	of	this	has	anything	to
do	with	the	contaminated	Broad	Street	water,	which	came	from	a	well.)

The	death	statistics	bore	out	Snow’s	grim	hypothesis.	Districts	supplied	by
the	 Southwark	 and	 Vauxhall	 Company	 were	 especially	 hard-hit	 by	 cholera
and	 had	 a	 death	 rate	 eight	 times	 higher.	 Even	 so,	 the	 evidence	was	merely
circumstantial.	A	proponent	of	the	miasma	theory	could	argue	that	the	miasma
was	strongest	in	those	districts,	and	there	would	be	no	way	to	disprove	it.	In
terms	of	a	causal	diagram,	we	have	 the	situation	diagrammed	in	Figure	7.7.
We	 have	 no	way	 to	 observe	 the	 confounder	Miasma	 (or	 other	 confounders
like	Poverty),	so	we	can’t	control	for	it	using	back-door	adjustment.

Here	Snow	had	his	most	brilliant	 idea.	He	noticed	 that	 in	 those	districts
served	 by	 both	 companies,	 the	 death	 rate	 was	 still	 much	 higher	 in	 the
households	that	received	Southwark	water.	Yet	these	households	did	not	differ
in	 terms	 of	 miasma	 or	 poverty.	 “The	 mixing	 of	 the	 supply	 is	 of	 the	 most
intimate	 kind,”	 Snow	wrote.	 “The	 pipes	 of	 each	Company	 go	 down	 all	 the
streets,	 and	 into	 nearly	 all	 the	 courts	 and	 alleys.…	Each	 company	 supplies



both	rich	and	poor,	both	large	houses	and	small;	there	is	no	difference	either
in	 the	 condition	 or	 occupation	 of	 the	 persons	 receiving	 the	 water	 of	 the
different	 Companies.”	 Even	 though	 the	 notion	 of	 an	 RCT	 was	 still	 in	 the
future,	 it	 was	 very	 much	 as	 if	 the	 water	 companies	 had	 conducted	 a
randomized	 experiment	 on	 Londoners.	 In	 fact,	 Snow	 even	 notes	 this:	 “No
experiment	 could	 have	 been	 devised	which	would	more	 thoroughly	 test	 the
effect	 of	 water	 supply	 on	 the	 progress	 of	 cholera	 than	 this,	 which
circumstances	 placed	 ready	made	 before	 the	 observer.	The	 experiment,	 too,
was	on	 the	grandest	 scale.	No	 fewer	 than	 three	hundred	 thousand	people	of
both	sexes,	of	every	age	and	occupation,	and	of	every	rank	and	station,	from
gentlefolks	down	to	the	very	poor,	were	divided	into	two	groups	without	their
choice,	and	in	most	cases,	without	their	knowledge.”	One	group	had	received
pure	water;	the	other	had	received	water	tainted	with	sewage.

FIGURE	7.7.	Causal	diagram	for	cholera	(before	discovery	of	the	cholera	bacillus).

Snow’s	 observations	 introduced	 a	 new	 variable	 into	 the	 causal	 diagram,
which	 now	 looks	 like	 Figure	 7.8.	 Snow’s	 painstaking	 detective	 work	 had
showed	 two	 important	 things:	 (1)	 there	 is	 no	 arrow	 between	 Miasma	 and
Water	Company	(the	two	are	independent),	and	(2)	there	is	an	arrow	between
Water	 Company	 and	 Water	 Purity.	 Left	 unstated	 by	 Snow,	 but	 equally
important,	is	a	third	assumption:	(3)	the	absence	of	a	direct	arrow	from	Water
Company	 to	Cholera,	which	 is	 fairly	obvious	 to	us	 today	because	we	know
the	water	companies	were	not	delivering	cholera	to	their	customers	by	some
alternate	route.

FIGURE	7.8.	Diagram	for	cholera	after	introduction	of	an	instrumental	variable.

A	 variable	 that	 satisfies	 these	 three	 properties	 is	 today	 called	 an
instrumental	 variable.	Clearly	 Snow	 thought	 of	 this	 variable	 as	 similar	 to	 a
coin	flip,	which	simulates	a	variable	with	no	incoming	arrows.	Because	there
are	no	confounders	of	the	relation	between	Water	Company	and	Cholera,	any



observed	 association	 must	 be	 causal.	 Likewise,	 since	 the	 effect	 of	 Water
Company	 on	 Cholera	 must	 go	 through	 Water	 Purity,	 we	 conclude	 (as	 did
Snow)	that	the	observed	association	between	Water	Purity	and	Cholera	must
also	 be	 causal.	 Snow	 stated	 his	 conclusion	 in	 no	 uncertain	 terms:	 if	 the
Southwark	and	Vauxhall	Company	had	moved	its	intake	point	upstream,	more
than	1,000	lives	would	have	been	saved.

Few	 people	 took	 note	 of	 Snow’s	 conclusion	 at	 the	 time.	 He	 printed	 a
pamphlet	of	the	results	at	his	own	expense,	and	it	sold	a	grand	total	of	fifty-
six	 copies.	 Nowadays,	 epidemiologists	 view	 his	 pamphlet	 as	 the	 seminal
document	of	 their	discipline.	 It	 showed	 that	 through	“shoe-leather	 research”
(a	phrase	I	have	borrowed	from	David	Freedman)	and	causal	reasoning,	you
can	track	down	a	killer.

Although	 the	miasma	 theory	 has	 by	 now	 been	 discredited,	 poverty	 was
undoubtedly	a	confounder,	as	was	location.	But	even	without	measuring	these
(because	Snow’s	door-to-door	detective	work	only	went	so	far),	we	can	still
use	 instrumental	 variables	 to	 determine	 how	 many	 lives	 would	 have	 been
saved	by	purifying	the	water	supply.

Here’s	how	the	trick	works.	For	simplicity	we’ll	go	back	to	the	names	Z,
X,	Y,	and	U	 for	our	variables	and	redraw	Figure	7.8	as	seen	 in	Figure	7.9.	 I
have	 included	 path	 coefficients	 (a,	 b,	 c,	 d)	 to	 represent	 the	 strength	 of	 the
causal	effects.	This	means	we	are	assuming	 that	 the	variables	are	numerical
and	the	functions	relating	them	are	linear.	Remember	that	the	path	coefficient
a	means	that	an	intervention	to	increase	Z	by	one	standard	unit	will	cause	X	to
increase	 by	a	 standard	 units.	 (I	 will	 omit	 the	 technical	 details	 of	 what	 the
“standard	units”	are.)

FIGURE	7.9.	General	setup	for	instrumental	variables.

Because	Z	and	X	are	unconfounded,	the	causal	effect	of	Z	on	X	(that	is,	a)
can	 be	 estimated	 from	 the	 slope	 rXZ	 of	 the	 regression	 line	 of	 X	 on	 Z.
Likewise,	the	variables	Z	and	Y	are	unconfounded,	because	the	path	Z	 	X	
U	 	Y	is	blocked	by	the	collider	at	X.	So	the	slope	of	the	regression	line	of	Z
on	Y	(rZY)	will	equal	the	causal	effect	on	the	direct	path	Z	 	X	 	Y,	which	is
the	product	of	the	path	coefficients:	ab.	Thus	we	have	two	equations:	ab	=	rZY



and	a	=	rZX.	If	we	divide	the	first	equation	by	the	second,	we	get	the	causal
effect	of	X	on	Y:	b	=	rZY/rZX.

In	 this	way,	 instrumental	variables	allow	us	 to	perform	 the	same	kind	of
magic	trick	that	we	did	with	front-door	adjustment:	we	have	found	the	effect
of	 X	 on	 Y	 even	 without	 being	 able	 to	 control	 for,	 or	 collect	 data	 on,	 the
confounder,	U.	We	can	 therefore	provide	decision	makers	with	a	conclusive
argument	 that	 they	 should	move	 their	water	 supply—even	 if	 those	 decision
makers	 still	 believe	 in	 the	miasma	 theory.	 Also	 notice	 that	 we	 have	 gotten
information	 on	 the	 second	 rung	 of	 the	 Ladder	 of	 Causation	 (b)	 from
information	about	the	first	rung	(the	correlations,	rZY	and	rZX).	We	were	able
to	do	this	because	the	assumptions	embodied	in	the	path	diagram	are	causal	in
nature,	especially	the	crucial	assumption	that	there	is	no	arrow	between	U	and
Z.	If	the	causal	diagram	were	different—for	example,	if	Z	were	a	confounder
of	X	and	Y—the	formula	b	=	rZY/rZX	would	not	correctly	estimate	the	causal
effect	 of	 X	 on	 Y.	 In	 fact,	 these	 two	 models	 cannot	 be	 told	 apart	 by	 any
statistical	method,	regardless	of	how	big	the	data.

Instrumental	 variables	 were	 known	 before	 the	 Causal	 Revolution,	 but
causal	 diagrams	 have	 brought	 new	 clarity	 to	 how	 they	work.	 Indeed,	 Snow
was	 using	 an	 instrumental	 variable	 implicitly,	 although	 he	 did	 not	 have	 a
quantitative	 formula.	 Sewall	 Wright	 certainly	 understood	 this	 use	 of	 path
diagrams;	the	formula	b	=	rZY/rZX	can	be	derived	directly	from	his	method	of
path	coefficients.	And	it	seems	that	the	first	person	other	than	Sewall	Wright
to	 use	 instrumental	 variables	 in	 a	 deliberate	 way	 was…	 Sewall	 Wright’s
father,	Philip!

Recall	 that	 Philip	 Wright	 was	 an	 economist	 who	 worked	 at	 what	 later
became	 the	 Brookings	 Institution.	 He	 was	 interested	 in	 predicting	 how	 the
output	of	a	commodity	would	change	if	a	tariff	were	imposed,	which	would
raise	 the	 price	 and	 therefore,	 in	 theory,	 encourage	 production.	 In	 economic
terms,	he	wanted	to	know	the	elasticity	of	supply.

In	 1928	 Wright	 wrote	 a	 long	 monograph	 dedicated	 to	 computing	 the
elasticity	of	supply	for	flaxseed	oil.	In	a	remarkable	appendix,	he	analyzed	the
problem	using	a	path	diagram.	This	was	a	brave	thing	to	do:	remember	that	no
economist	had	ever	seen	or	heard	of	such	a	thing	before.	(In	fact,	he	hedged
his	bets	and	verified	his	calculations	using	more	traditional	methods.)

Figure	 7.10	 shows	 a	 somewhat	 simplified	 version	 of	Wright’s	 diagram.
Unlike	 most	 diagrams	 in	 this	 book,	 this	 one	 has	 “two-way”	 arrows,	 but	 I
would	 ask	 the	 reader	 not	 to	 lose	 too	 much	 sleep	 over	 it.	 With	 some



mathematical	trickery	we	could	equally	well	replace	the	Demand	 	Price	
Supply	 chain	with	 a	 single	 arrow	Demand	 	Supply,	 and	 the	 figure	would
then	look	like	Figure	7.9	(though	it	would	be	less	acceptable	to	economists).
The	 important	point	 to	note	 is	 that	Philip	Wright	deliberately	 introduced	the
variable	 Yield	 per	 Acre	 (of	 flaxseed)	 as	 an	 instrument	 that	 directly	 affects
supply	but	has	no	correlation	to	demand.	He	then	used	an	analysis	like	the	one
I	just	gave	to	deduce	both	the	effect	of	supply	on	price	and	the	effect	of	price
on	supply.

FIGURE	7.10.	Simplified	version	of	Wright’s	supply-price	causal	diagram.

Historians	 quarrel	 about	 who	 invented	 instrumental	 variables,	 a	 method
that	became	extremely	popular	in	modern	econometrics.	There	is	no	question
in	my	mind	that	Philip	Wright	borrowed	the	idea	of	path	coefficients	from	his
son.	No	economist	had	ever	before	insisted	on	the	distinction	between	causal
coefficients	 and	 regression	 coefficients;	 they	were	 all	 in	 the	 Karl	 Pearson–
Henry	 Niles	 camp	 that	 causation	 is	 nothing	 more	 than	 a	 limiting	 case	 of
correlation.	Also,	 no	 one	 before	 Sewall	Wright	 had	 ever	 given	 a	 recipe	 for
computing	regression	coefficients	in	terms	of	path	coefficients,	then	reversing
the	 process	 to	 get	 the	 causal	 coefficients	 from	 the	 regression.	 This	 was
Sewall’s	exclusive	invention.

Naturally,	some	economic	historians	have	suggested	that	Sewall	wrote	the
whole	 mathematical	 appendix	 himself.	 However,	 stylometric	 analysis	 has
shown	that	Philip	was	indeed	the	author.	To	me,	this	historical	detective	work
makes	 the	 story	 more	 beautiful.	 It	 shows	 that	 Philip	 took	 the	 trouble	 to
understand	his	son’s	theory	and	articulate	it	in	his	own	language.

Now	let’s	move	forward	from	the	1850s	and	1920s	to	look	at	a	present-day
example	 of	 instrumental	 variables	 in	 action,	 one	 of	 literally	 dozens	 I	 could
have	chosen.

GOOD	AND	BAD	CHOLESTEROL

Do	you	remember	when	your	family	doctor	first	started	talking	to	you	about
“good”	 and	 “bad”	 cholesterol?	 It	 may	 have	 happened	 in	 the	 1990s,	 when



drugs	that	lowered	blood	levels	of	“bad”	cholesterol,	low-density	lipoprotein
(LDL),	first	came	on	the	market.	These	drugs,	called	statins,	have	turned	into
multibillion-dollar	revenue	generators	for	pharmaceutical	companies.

The	first	cholesterol-modifying	drug	subjected	to	a	randomized	controlled
trial	was	 cholestyramine.	 The	Coronary	 Primary	 Prevention	Trial,	 begun	 in
1973	and	concluded	in	1984,	showed	a	12.6	percent	reduction	in	cholesterol
among	men	given	the	drug	cholestyramine	and	a	19	percent	reduction	in	the
risk	of	heart	attack.

Because	 this	 was	 a	 randomized	 controlled	 trial,	 you	 might	 think	 we
wouldn’t	 need	 any	 of	 the	 methods	 in	 this	 chapter,	 because	 they	 are
specifically	 designed	 to	 replace	 RCTs	 in	 situations	 where	 you	 only	 have
observational	data.	But	that	is	not	true.	This	trial,	like	many	RCTs,	faced	the
problem	of	noncompliance,	when	subjects	randomized	to	receive	a	drug	don’t
actually	take	it.	This	will	reduce	the	apparent	effectiveness	of	the	drug,	so	we
may	want	to	adjust	the	results	to	account	for	the	noncompliers.	But	as	always,
confounding	 rears	 its	 ugly	 head.	 If	 the	 noncompliers	 are	 different	 from	 the
compliers	 in	 some	 relevant	way	 (maybe	 they	 are	 sicker	 to	 start	with?),	we
cannot	 predict	 how	 they	 would	 have	 responded	 had	 they	 adhered	 to
instructions.

In	this	situation,	we	have	a	causal	diagram	that	looks	like	Figure	7.11.	The
variable	Assigned	(Z)	will	take	the	value	1	if	the	patient	is	randomly	assigned
to	receive	the	drug	and	0	if	he	is	randomly	assigned	a	placebo.	The	variable
Received	will	be	1	if	the	patient	actually	took	the	drug	and	0	otherwise.	For
convenience,	we’ll	also	use	a	binary	definition	for	Cholesterol,	recording	an
outcome	of	1	if	the	cholesterol	levels	were	reduced	by	a	certain	fixed	amount.

FIGURE	7.11.	Causal	diagram	for	an	RCT	with	noncompliance.

Notice	that	in	this	case	our	variables	are	binary,	not	numerical.	This	means
right	away	that	we	cannot	use	a	linear	model,	and	therefore	we	cannot	apply
the	 instrumental	variables	formula	 that	we	derived	earlier.	However,	 in	such
cases	we	can	often	replace	the	linearity	assumption	with	a	weaker	condition
called	monotonicity,	which	I’ll	explain	below.

But	before	we	do	that,	let’s	make	sure	our	other	necessary	assumptions	for



instrumental	 variables	 are	 valid.	 First,	 is	 the	 instrumental	 variable	 Z
independent	 of	 the	 confounder?	 The	 randomization	 of	 Z	 ensures	 that	 the
answer	is	yes.	(As	we	saw	in	Chapter	4,	randomization	is	a	great	way	to	make
sure	that	a	variable	isn’t	affected	by	any	confounders.)	Is	there	any	direct	path
from	 Z	 to	 Y?	 Common	 sense	 says	 that	 there	 is	 no	 way	 that	 receiving	 a
particular	 random	number	(Z)	would	affect	 cholesterol	 (Y),	 so	 the	answer	 is
no.	Finally,	is	there	a	strong	association	between	Z	and	X?	This	time	the	data
themselves	should	be	consulted,	and	the	answer	again	is	yes.	We	must	always
ask	 the	 above	 three	 questions	 before	we	 apply	 instrumental	 variables.	Here
the	answers	 are	obvious,	but	we	 should	not	be	blind	 to	 the	 fact	 that	we	are
using	 causal	 intuition	 to	 answer	 them,	 intuition	 that	 is	 captured,	 preserved,
and	elucidated	in	the	diagram.

Table	 7.1	 shows	 the	 observed	 frequencies	 of	 outcomes	 X	 and	 Y.	 For
example,	91.9	percent	of	the	people	who	were	not	assigned	the	drug	had	the
outcome	X	=	0	(didn’t	take	drug)	and	Y	=	0	(no	reduction	in	cholesterol).	This
makes	sense.	The	other	8.1	percent	had	the	outcome	X	=	0	(didn’t	take	drug)
and	Y	=	1	(did	have	a	reduction	in	cholesterol).	Evidently	they	improved	for
other	reasons	than	taking	the	drug.	Notice	also	that	there	are	two	zeros	in	the
table:	 there	 was	 nobody	 who	 was	 not	 assigned	 the	 drug	 (Z	 =	 0)	 but
nevertheless	 procured	 some	 (X	 =	 1).	 In	 a	 well-run	 randomized	 study,
especially	in	the	medical	field	where	the	physicians	have	exclusive	access	to
the	experimental	drug,	 this	will	 typically	be	 true.	The	assumption	 that	 there
are	no	individuals	with	Z	=	0	and	X	=	1	is	called	monotonicity.

TABLE	7.1.	Data	from	cholestyramine	trial.

Now	let’s	see	how	we	can	estimate	 the	effect	of	 the	 treatment.	First	 let’s
take	the	worst-case	scenario:	none	of	the	noncompliers	would	have	improved
if	they	had	complied	with	treatment.	In	that	case,	the	only	people	who	would
have	taken	the	drug	and	improved	would	be	the	47.3	percent	who	actually	did
comply	 and	 improve.	 But	 we	 need	 to	 correct	 this	 estimate	 for	 the	 placebo
effect,	 which	 is	 in	 the	 third	 row	 of	 the	 table.	 Out	 of	 the	 people	 who	were
assigned	the	placebo	and	took	the	placebo,	8.1	percent	improved.	So	the	net
improvement	above	and	beyond	the	placebo	effect	is	47.3	percent	minus	8.1



percent,	or	39.2	percent.

What	 about	 the	best-case	 scenario,	 in	which	 all	 the	 noncompliers	would
have	improved	if	 they	had	complied?	In	this	case	we	add	the	noncompliers’
31.5	percent	plus	7.3	percent	to	the	39.2	percent	baseline	we	just	computed,
for	a	total	of	78.0	percent.

Thus,	 even	 in	 the	 worst-case	 scenario,	 where	 the	 confounding	 goes
completely	 against	 the	 drug,	 we	 can	 still	 say	 that	 the	 drug	 improves
cholesterol	for	39	percent	of	the	population.	In	the	best-case	scenario,	where
the	 confounding	 works	 completely	 in	 favor	 of	 the	 drug,	 78	 percent	 of	 the
population	would	see	an	improvement.	Even	though	the	bounds	are	quite	far
apart,	 due	 to	 the	 large	 number	 of	 noncompliers,	 the	 researcher	 can
categorically	state	that	the	drug	is	effective	for	its	intended	purpose.

This	strategy	of	taking	the	worst	case	and	then	the	best	case	will	usually
give	 us	 a	 range	 of	 estimates.	 Obviously	 it	 would	 be	 nice	 to	 have	 a	 point
estimate,	as	we	did	in	the	linear	case.	There	are	ways	to	narrow	the	range	if
necessary,	 and	 in	 some	 cases	 it	 is	 even	 possible	 to	 get	 point	 estimates.	 For
example,	 if	 you	 are	 interested	 only	 in	 the	 complying	 subpopulation	 (those
people	 who	 will	 take	 X	 if	 and	 only	 if	 assigned),	 you	 can	 derive	 a	 point
estimate	known	as	the	Local	Average	Treatment	Effect	(LATE).	In	any	event,
I	 hope	 this	 example	 shows	 that	 our	 hands	 are	 not	 tied	 when	 we	 leave	 the
world	of	linear	models.

Instrumental	variable	methods	have	continued	to	develop	since	1984,	and
one	 particular	 version	 has	 become	 extremely	 popular:	 Mendelian
randomization.	 Here’s	 an	 example.	 Although	 the	 effect	 of	 LDL,	 or	 “bad,”
cholesterol	 is	now	settled,	 there	 is	 still	 considerable	uncertainty	about	high-
density	 lipoprotein	 (HDL),	 or	 “good,”	 cholesterol.	 Early	 observational
studies,	such	as	the	Framingham	Heart	Study	in	the	late	1970s,	suggested	that
HDL	had	a	protective	effect	against	heart	attacks.	But	high	HDL	often	goes
hand	in	hand	with	low	LDL,	so	how	can	we	tell	which	lipid	is	the	true	causal
factor?

To	answer	this	question,	suppose	we	knew	of	a	gene	that	caused	people	to
have	higher	HDL	 levels,	with	 no	 effect	 on	LDL.	Then	we	 could	 set	 up	 the
causal	 diagram	 in	 Figure	 7.12,	 where	 I	 have	 used	 Lifestyle	 as	 a	 possible
confounder.	Remember	that	it	is	always	advantageous,	as	in	Snow’s	example,
to	 use	 an	 instrumental	 variable	 that	 is	 randomized.	 If	 it’s	 randomized,	 no
causal	arrows	point	toward	it.	For	this	reason,	a	gene	is	a	perfect	instrumental
variable.	Our	genes	are	randomized	at	the	time	of	conception,	so	it’s	just	as	if
Gregor	Mendel	 himself	 had	 reached	 down	 from	 heaven	 and	 assigned	 some



people	a	high-risk	gene	and	others	a	low-risk	gene.	That’s	the	reason	for	the
term	“Mendelian	randomization.”

Could	 there	 be	 an	 arrow	 going	 the	 other	 way,	 from	 HDL	 Gene	 to
Lifestyle?	Here	we	again	need	to	do	“shoe-leather	work”	and	think	causally.
The	HDL	gene	could	only	affect	people’s	lifestyle	if	they	knew	which	version
they	had,	the	high-HDL	version	or	the	low-HDL	one.	But	until	2008	no	such
genes	were	 known,	 and	 even	 today,	 people	 do	 not	 routinely	 have	 access	 to
this	information.	So	it’s	highly	likely	that	no	such	arrow	exists.

Figure	7.12.	Causal	diagram	for	Mendelian	randomization	example.

At	least	two	studies	have	taken	this	Mendelian	randomization	approach	to
the	 cholesterol	 question.	 In	 2012,	 a	 giant	 collaborative	 study	 led	 by	 Sekar
Kathiresan	 of	 Massachusetts	 General	 Hospital	 showed	 that	 there	 was	 no
observable	 benefit	 from	 higher	 HDL	 levels.	 On	 the	 other	 hand,	 the
researchers	 found	 that	 LDL	 has	 a	 very	 large	 effect	 on	 heart	 attack	 risk.
According	 to	 their	 figures,	 decreasing	 your	 LDL	 count	 by	 34	mg/dl	would
reduce	your	chances	of	a	heart	attack	by	about	50	percent.	So	lowering	your
“bad”	cholesterol	levels,	whether	by	diet	or	exercise	or	statins,	seems	to	be	a
smart	 idea.	 On	 the	 other	 hand,	 increasing	 your	 “good”	 cholesterol	 levels,
despite	what	 some	 fish-oil	 salesmen	might	 tell	you,	does	not	 seem	 likely	 to
change	your	heart	attack	risk	at	all.

As	always,	there	is	a	caveat.	The	second	study,	published	in	the	same	year,
pointed	out	that	people	with	the	lower-risk	variant	of	the	LDL	gene	have	had
lower	cholesterol	 levels	 for	 their	entire	 lives.	Mendelian	 randomization	 tells
us	that	decreasing	your	LDL	by	thirty-four	units	over	your	entire	lifetime	will
decrease	 your	 heart	 attack	 risk	 by	 50	 percent.	 But	 statins	 can’t	 lower	 your
LDL	cholesterol	over	your	entire	lifetime—only	from	the	day	you	start	taking
the	drug.	If	you’re	sixty	years	old,	your	arteries	have	already	sustained	sixty
years	 of	 damage.	 For	 that	 reason	 it’s	 very	 likely	 that	 Mendelian
randomization	 overestimates	 the	 true	 benefits	 of	 statins.	On	 the	 other	 hand,
starting	to	reduce	your	cholesterol	when	you’re	young—whether	through	diet
or	exercise	or	even	statins—will	have	big	effects	later.

From	the	point	of	view	of	causal	analysis,	this	teaches	us	a	good	lesson:	in
any	study	of	interventions,	we	need	to	ask	whether	the	variable	we’re	actually



manipulating	 (lifetime	LDL	 levels)	 is	 the	 same	as	 the	variable	we	 think	we
are	 manipulating	 (current	 LDL	 levels).	 This	 is	 part	 of	 the	 “skillful
interrogation	of	nature.”

To	sum	up,	 instrumental	variables	are	an	important	 tool	 in	 that	 they	help
us	 uncover	 causal	 information	 that	 goes	 beyond	 the	 do-calculus.	 The	 latter
insists	on	point	estimates	rather	than	inequalities	and	would	give	up	on	cases
like	Figure	7.12,	in	which	all	we	can	get	are	inequalities.	On	the	other	hand,
it’s	also	important	to	realize	that	the	do-calculus	is	vastly	more	flexible	than
instrumental	 variables.	 In	do-calculus	we	make	 no	 assumptions	whatsoever
regarding	the	nature	of	the	functions	in	the	causal	model.	But	if	we	can	justify
an	 assumption	 like	 monotonicity	 or	 linearity	 on	 scientific	 grounds,	 then	 a
more	special-purpose	tool	like	instrumental	variables	is	worth	considering.

Instrumental	 variable	 methods	 can	 be	 extended	 beyond	 simple	 four-
variable	models	like	Figure	7.9	(or	7.11	or	7.12),	but	it	 is	not	possible	to	go
very	far	without	guidance	from	causal	diagrams.	For	example,	in	some	cases
an	imperfect	instrument	(e.g.,	one	that	is	not	independent	of	the	confounder)
can	be	used	after	conditioning	on	a	cleverly	chosen	set	of	auxiliary	variables,
which	block	the	paths	between	the	instrument	and	the	confounder.	My	former
student	 Carlos	 Brito,	 now	 a	 professor	 at	 the	 Federal	 University	 of	 Ceara,
Brazil,	 fully	 developed	 this	 idea	 of	 turning	 noninstrumental	 variables	 into
instrumental	variables.

In	addition,	Brito	studied	many	cases	where	a	set	of	variables	can	be	used
successfully	as	an	instrument.	Although	the	identification	of	instrumental	sets
goes	 beyond	 do-calculus,	 it	 still	 uses	 the	 tools	 of	 causal	 diagrams.	 For
researchers	who	understand	 this	 language,	 the	possible	 research	designs	 are
rich	and	varied;	 they	need	not	 feel	constrained	 to	use	only	 the	 four-variable
model	shown	in	Figures	7.9,	7.11,	and	7.12.	The	possibilities	are	limited	only
by	our	imaginations.



Robert	Frost’s	famous	lines	show	a	poet’s	acute	insight	into	counterfactuals.	We
cannot	travel	both	roads,	and	yet	our	brains	are	equipped	to	judge	what	would	have
happened	if	we	had	taken	the	other	path.	Armed	with	this	judgment,	Frost	ends	the
poem	pleased	with	his	choice,	realizing	that	it	“made	all	the	difference.”	(Source:

Drawing	by	Maayan	Harel.)
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COUNTERFACTUALS:	MINING	WORLDS
THAT	COULD	HAVE	BEEN

Had	Cleopatra’s	nose	been	shorter,	the	whole	face	of	the	world	would
have	changed.

—BLAISE	PASCAL	(1669)

AS	we	prepare	to	move	up	to	the	top	rung	of	the	Ladder	of	Causation,	let’s
recapitulate	 what	 we	 have	 learned	 from	 the	 second	 rung.	 We	 have	 seen
several	ways	to	ascertain	the	effect	of	an	intervention	in	various	settings	and
under	 a	 variety	 of	 conditions.	 In	 Chapter	 4,	 we	 discussed	 randomized
controlled	trials,	the	widely	cited	“gold	standard”	for	medical	trials.	We	have
also	 seen	 methods	 that	 are	 suitable	 for	 observational	 studies,	 in	 which	 the
treatment	and	control	groups	are	not	assigned	at	random.	If	we	can	measure
variables	 that	 block	 all	 the	 back-door	 paths,	 we	 can	 use	 the	 back-door
adjustment	 formula	 to	 obtain	 the	 needed	 effect.	 If	we	 can	 find	 a	 front-door
path	that	is	“shielded”	from	confounders,	we	can	use	front-door	adjustment.	If
we	 are	willing	 to	 live	with	 the	 assumption	 of	 linearity	 or	monotonicity,	we
can	use	instrumental	variables	(assuming	that	an	appropriate	variable	can	be
found	 in	 the	 diagram	 or	 created	 by	 an	 experiment).	 And	 truly	 adventurous
researchers	can	plot	other	 routes	 to	 the	 top	of	Mount	 Intervention	using	 the
do-calculus	or	its	algorithmic	version.

In	 all	 these	 endeavors,	 we	 have	 dealt	 with	 effects	 on	 a	 population	 or	 a
typical	individual	selected	from	a	study	population	(the	average	causal	effect).
But	so	far	we	are	missing	 the	ability	 to	 talk	about	personalized	causation	at



the	 level	of	particular	events	or	 individuals.	 It’s	one	 thing	 to	 say,	“Smoking
causes	cancer,”	but	another	 to	say	 that	my	uncle	Joe,	who	smoked	a	pack	a
day	for	thirty	years,	would	have	been	alive	had	he	not	smoked.	The	difference
is	 both	 obvious	 and	 profound:	 none	 of	 the	 people	 who,	 like	 Uncle	 Joe,
smoked	for	thirty	years	and	died	can	ever	be	observed	in	the	alternate	world
where	they	did	not	smoke	for	thirty	years.

Responsibility	 and	 blame,	 regret	 and	 credit:	 these	 concepts	 are	 the
currency	of	a	causal	mind.	To	make	any	sense	of	 them,	we	must	be	able	 to
compare	 what	 did	 happen	 with	 what	 would	 have	 happened	 under	 some
alternative	 hypothesis.	 As	 argued	 in	 Chapter	 1,	 our	 ability	 to	 conceive	 of
alternative,	 nonexistent	worlds	 separated	 us	 from	our	 protohuman	 ancestors
and	indeed	from	any	other	creature	on	the	planet.	Every	other	creature	can	see
what	 is.	Our	gift,	which	may	sometimes	be	a	curse,	 is	 that	we	can	see	what
might	have	been.

This	 chapter	 shows	 how	 to	 use	 observational	 and	 experimental	 data	 to
extract	 information	 about	 counterfactual	 scenarios.	 It	 explains	 how	 to
represent	 individual-level	 causes	 in	 the	 context	 of	 a	 causal	 diagram,	 a	 task
that	will	 force	us	 to	explain	some	nuts	and	bolts	of	causal	diagrams	that	we
have	 not	 talked	 about	 yet.	 I	 also	 discuss	 a	 highly	 related	 concept	 called
“potential	outcomes,”	or	the	Neyman-Rubin	causal	model,	initially	proposed
in	 the	 1920s	 by	 Jerzy	 Neyman,	 a	 Polish	 statistician	 who	 later	 became	 a
professor	 at	 Berkeley.	 But	 only	 after	 Donald	 Rubin	 began	 writing	 about
potential	 outcomes	 in	 the	 mid-1970s	 did	 this	 approach	 to	 causal	 analysis
really	begin	to	flourish.

I	 will	 show	 how	 counterfactuals	 emerge	 naturally	 in	 the	 framework
developed	over	the	last	several	chapters—Sewall	Wright’s	path	diagrams	and
their	 extension	 to	 structural	 causal	models	 (SCMs).	We	got	 a	 good	 taste	 of
this	 in	Chapter	1,	 in	 the	example	of	 the	 firing	squad,	which	showed	how	to
answer	 counterfactual	 questions	 such	 as	 “Would	 the	 prisoner	 be	 alive	 if
rifleman	A	had	not	shot?”	I	will	compare	how	counterfactuals	are	defined	in
the	Neyman-Rubin	paradigm	and	 in	SCMs,	where	 they	enjoy	 the	benefit	of
causal	 diagrams.	 Rubin	 has	 steadfastly	 maintained	 over	 the	 years	 that
diagrams	 serve	no	useful	 purpose.	So	we	will	 examine	how	 students	 of	 the
Rubin	 causal	 model	 must	 navigate	 causal	 problems	 blindfolded,	 lacking	 a
facility	to	represent	causal	knowledge	or	to	derive	its	testable	implications.

Finally,	we	will	look	at	two	applications	where	counterfactual	reasoning	is
essential.	 For	 decades	 or	 even	 centuries,	 lawyers	 have	 used	 a	 relatively
straightforward	test	of	a	defendant’s	culpability	called	“but-for	causation”:	the



injury	would	 not	 have	 occurred	but	 for	 the	 defendant’s	 action.	We	will	 see
how	the	language	of	counterfactuals	can	capture	this	elusive	notion	and	how
to	estimate	the	probability	that	a	defendant	is	culpable.

Next,	 I	will	discuss	 the	application	of	counterfactuals	 to	climate	change.
Until	recently,	climate	scientists	have	found	it	very	difficult	and	awkward	to
answer	 questions	 like	 “Did	 global	 warming	 cause	 this	 storm	 [or	 this	 heat
wave,	 or	 this	 drought]?”	 The	 conventional	 answer	 has	 been	 that	 individual
weather	events	cannot	be	attributed	to	global	climate	change.	Yet	this	answer
seems	 rather	 evasive	 and	may	 even	 contribute	 to	 public	 indifference	 about
climate	change.

Counterfactual	 analysis	 allows	 climate	 scientists	 to	 make	 much	 more
precise	 and	 definite	 statements	 than	 before.	 It	 requires,	 however,	 a	 slight
addition	 to	 our	 everyday	 vocabulary.	 It	 will	 be	 helpful	 to	 distinguish	 three
different	 kinds	 of	 causation:	 necessary	 causation,	 sufficient	 causation,	 and
necessary-and-sufficient	 causation.	 (Necessary	 causation	 is	 the	 same	as	but-
for	causation.)	Using	these	words,	a	climate	scientist	can	say,	“There	is	a	90
percent	probability	 that	man-made	climate	change	was	a	necessary	cause	of
this	 heat	wave,”	 or	 “There	 is	 an	 80	 percent	 probability	 that	 climate	 change
will	 be	 sufficient	 to	 produce	 a	 heat	wave	 this	 strong	 at	 least	 once	 every	50
years.”	The	first	sentence	has	to	do	with	attribution:	Who	was	responsible	for
the	unusual	heat?	The	second	has	to	do	with	policy.	It	says	that	we	had	better
prepare	for	such	heat	waves	because	they	are	likely	to	occur	sooner	or	later.
Either	of	 these	statements	 is	more	 informative	 than	shrugging	our	shoulders
and	saying	nothing	about	the	causes	of	individual	weather	events.

FROM	THUCYDIDES	AND	ABRAHAM	TO	HUME	AND
LEWIS

Given	that	counterfactual	reasoning	is	part	of	the	mental	apparatus	that	makes
us	human,	it	is	not	surprising	that	we	can	find	counterfactual	statements	as	far
back	 as	 we	 want	 to	 go	 in	 human	 history.	 For	 example,	 in	 Thucydides’s
History	 of	 the	 Peloponnesian	 War,	 the	 ancient	 Greek	 historian,	 often
described	 as	 the	 pioneer	 of	 a	 “scientific”	 approach	 to	 history,	 describes	 a
tsunami	that	occurred	in	426	BC:

About	the	same	time	that	these	earthquakes	were	so	common,	the	sea	at
Orobiae,	 in	Euboea,	retiring	from	the	then	line	of	coast,	 returned	in	a
huge	wave	and	invaded	a	great	part	of	the	town,	and	retreated	leaving
some	 of	 it	 still	 under	water;	 so	 that	what	was	 once	 land	 is	 now	 sea;



such	 of	 the	 inhabitants	 perishing	 as	 could	 not	 run	 up	 to	 the	 higher
ground	in	time.…	The	cause,	in	my	opinion,	of	this	phenomenon	must
be	sought	in	the	earthquake.	At	the	point	where	its	shock	has	been	the
most	 violent	 the	 sea	 is	 driven	 back,	 and	 suddenly	 recoiling	 with
redoubled	force,	causes	the	inundation.	Without	an	earthquake	I	do	not
see	how	such	an	accident	could	happen.

This	is	a	truly	remarkable	passage	when	you	consider	the	era	in	which	it
was	written.	First,	the	precision	of	Thucydides’s	observations	would	do	credit
to	any	modern	scientist,	and	all	the	more	so	because	he	was	working	in	an	era
when	there	were	no	satellites,	no	video	cameras,	no	24/7	news	organizations
broadcasting	images	of	the	disaster	as	it	unfolded.	Second,	he	was	writing	at	a
time	in	human	history	when	natural	disasters	were	ordinarily	ascribed	to	the
will	 of	 the	 gods.	 His	 predecessor	 Homer	 or	 his	 contemporary	 Herodotus
would	 undoubtedly	 have	 attributed	 this	 event	 to	 the	 wrath	 of	 Poseidon	 or
some	 other	 deity.	 Yet	 Thucydides	 proposes	 a	 causal	 model	 without	 any
supernatural	processes:	the	earthquake	drives	back	the	sea,	which	recoils	and
inundates	 the	 land.	 The	 last	 sentence	 of	 the	 quote	 is	 especially	 interesting
because	it	expresses	the	notion	of	necessary	or	but-for	causation:	but	for	the
earthquake,	 the	 tsunami	 could	 not	 have	 occurred.	 This	 counterfactual
judgment	promotes	the	earthquake	from	a	mere	antecedent	of	the	tsunami	to
an	actual	cause.

Another	 fascinating	 and	 revealing	 instance	 of	 counterfactual	 reasoning
occurs	 in	 the	 book	 of	 Genesis	 in	 the	 Bible.	 Abraham	 is	 talking	 with	 God
about	 the	 latter’s	 intention	 to	destroy	 the	 cities	of	Sodom	and	Gomorrah	 as
retribution	for	their	evil	ways.

And	 Abraham	 drew	 near,	 and	 said,	 Wilt	 thou	 really	 destroy	 the
righteous	with	the	wicked?

Suppose	 there	 be	 fifty	 righteous	 within	 the	 city:	 wilt	 thou	 also
destroy	and	not	spare	the	place	for	the	sake	of	the	fifty	righteous	that
are	therein?…

And	the	Lord	said,	If	I	find	in	Sodom	fifty	righteous	within	the	city,
then	I	will	spare	all	the	place	for	their	sakes.

But	 the	 story	 does	 not	 end	 there.	Abraham	 is	 not	 satisfied	 and	 asks	 the
Lord,	what	if	there	are	only	forty-five	righteous	men?	Or	forty?	Or	thirty?	Or
twenty?	Or	even	ten?	Each	time	he	receives	an	affirmative	answer,	and	God
ultimately	 assures	 him	 that	 he	 will	 spare	 Sodom	 even	 for	 the	 sake	 of	 ten
righteous	men,	if	he	can	find	that	many.



What	is	Abraham	trying	to	accomplish	with	this	haggling	and	bargaining?
Surely	 he	 does	 not	 doubt	 God’s	 ability	 to	 count.	 And	 of	 course,	 Abraham
knows	that	God	knows	how	many	righteous	men	live	in	Sodom.	He	is,	after
all,	omniscient.

Knowing	Abraham’s	obedience	and	devotion,	it	is	hard	to	believe	that	the
questions	are	meant	 to	 convince	 the	Lord	 to	 change	his	mind.	 Instead,	 they
are	 meant	 for	 Abraham’s	 own	 comprehension.	 He	 is	 reasoning	 just	 as	 a
modern	scientist	would,	 trying	 to	understand	 the	 laws	 that	govern	collective
punishment.	What	 level	 of	 wickedness	 is	 sufficient	 to	 warrant	 destruction?
Would	 thirty	 righteous	men	 be	 enough	 to	 save	 a	 city?	 Twenty?	We	 do	 not
have	a	complete	causal	model	without	such	 information.	A	modern	scientist
might	call	it	a	dose-response	curve	or	a	threshold	effect.

While	 Thucydides	 and	 Abraham	 probed	 counterfactuals	 through
individual	 cases,	 the	Greek	 philosopher	Aristotle	 investigated	more	 generic
aspects	of	causation.	In	his	typically	systematic	style,	Aristotle	set	up	a	whole
taxonomy	 of	 causation,	 including	 “material	 causes,”	 “formal	 causes,”
“efficient	causes,”	and	“final	causes.”	For	example,	the	material	cause	of	the
shape	 of	 a	 statue	 is	 the	 bronze	 from	which	 it	 is	 cast	 and	 its	 properties;	we
could	 not	 make	 the	 same	 statue	 out	 of	 Silly	 Putty.	 However,	 Aristotle
nowhere	 makes	 a	 statement	 about	 causation	 as	 a	 counterfactual,	 so	 his
ingenious	 classification	 lacks	 the	 simple	 clarity	 of	 Thucydides’s	 account	 of
the	cause	of	the	tsunami.

To	find	a	philosopher	who	placed	counterfactuals	at	the	heart	of	causality,
we	 have	 to	 move	 ahead	 to	 David	 Hume,	 the	 Scottish	 philosopher	 and
contemporary	 of	 Thomas	 Bayes.	 Hume	 rejected	 Aristotle’s	 classification
scheme	 and	 insisted	 on	 a	 single	 definition	 of	 causation.	 But	 he	 found	 this
definition	quite	elusive	and	was	in	fact	torn	between	two	different	definitions.
Later	 these	 would	 turn	 into	 two	 incompatible	 ideologies,	 which	 ironically
could	both	cite	Hume	as	their	source!

In	his	Treatise	of	Human	Nature	 (Figure	8.1),	Hume	denies	 that	any	 two
objects	have	innate	qualities	or	“powers”	that	make	one	a	cause	and	the	other
an	effect.	In	his	view,	the	cause-effect	relationship	is	entirely	a	product	of	our
own	memory	and	experience.	“Thus	we	remember	to	have	seen	that	species
of	 object	 we	 call	 flame,	 and	 to	 have	 felt	 that	 species	 of	 sensation	 we	 call
heat,”	he	writes.	“We	 likewise	call	 to	mind	 their	constant	conjunction	 in	all
past	 instances.	Without	any	further	ceremony,	we	call	 the	one	cause	and	the
other	effect,	 and	 infer	 the	existence	of	 the	one	 from	 the	other.”	This	 is	now
known	as	the	“regularity”	definition	of	causation.



The	passage	is	breathtaking	in	its	chutzpah.	Hume	is	cutting	off	the	second
and	 third	 rungs	 of	 the	 Ladder	 of	 Causation	 and	 saying	 that	 the	 first	 rung,
observation,	 is	all	 that	we	need.	Once	we	observe	flame	and	heat	 together	a
sufficient	number	of	times	(and	note	that	flame	has	temporal	precedence),	we
agree	to	call	flame	the	cause	of	heat.	Like	most	twentieth-century	statisticians,
Hume	 in	 1739	 seems	 happy	 to	 consider	 causation	 as	 merely	 a	 species	 of
correlation.



FIGURE	8.1.	Hume’s	“regularity”	definition	of	cause	and	effect,	proposed	in	1739.

And	yet	Hume,	to	his	credit,	did	not	remain	satisfied	with	this	definition.
Nine	years	later,	in	An	Enquiry	Concerning	Human	Understanding,	he	wrote
something	quite	different:	“We	may	define	a	cause	to	be	an	object	followed	by
another,	and	where	all	the	objects,	similar	to	the	first,	are	followed	by	objects
similar	 to	 the	 second.	Or,	 in	 other	words,	where,	 if	 the	 first	 object	 had	 not
been,	 the	 second	 never	 had	 existed”	 (emphasis	 in	 the	 original).	 The	 first
sentence,	the	version	where	A	is	consistently	observed	together	with	B,	simply
repeats	 the	 regularity	 definition.	 But	 by	 1748,	 he	 seems	 to	 have	 some
misgivings	 and	 finds	 it	 in	 need	 of	 some	 repair.	 As	 authorized	 Whiggish
historians,	 we	 can	 understand	 why.	 According	 to	 his	 earlier	 definition,	 the
rooster’s	 crow	would	 cause	 sunrise.	To	patch	over	 this	 difficulty,	 he	 adds	 a
second	 definition	 that	 he	 never	 even	 hinted	 at	 in	 his	 earlier	 book,	 a
counterfactual	 definition:	 “if	 the	 first	 object	 had	 not	 been,	 the	 second	 had



never	existed.”

Note	 that	 the	 second	 definition	 is	 exactly	 the	 one	 that	 Thucydides	 used
when	he	discussed	the	tsunami	at	Orobiae.	The	counterfactual	definition	also
explains	why	we	do	not	 consider	 the	 rooster’s	 crow	a	 cause	of	 sunrise.	We
know	that	if	the	rooster	was	sick	one	day,	or	capriciously	refused	to	crow,	the
sun	would	rise	anyway.

Although	Hume	tries	to	pass	these	two	definitions	off	as	one,	by	means	of
his	 innocent	 interjection	 “in	other	words,”	 the	 second	version	 is	 completely
different	from	the	first.	It	explicitly	invokes	a	counterfactual,	so	it	lies	on	the
third	rung	of	the	Ladder	of	Causation.	Whereas	regularities	can	be	observed,
counterfactuals	can	only	be	imagined.

It	 is	 worth	 thinking	 for	 a	 moment	 about	 why	 Hume	 chooses	 to	 define
causes	 in	 terms	 of	 counterfactuals,	 rather	 than	 the	 other	 way	 around.
Definitions	are	 intended	 to	 reduce	a	more	complicated	concept	 to	a	 simpler
one.	Hume	surmises	that	his	readers	will	understand	the	statement	“if	the	first
object	had	not	been,	 the	second	had	never	existed”	with	less	ambiguity	than
they	 will	 understand	 “the	 first	 object	 caused	 the	 second.”	 He	 is	 absolutely
right.	 The	 latter	 statement	 invites	 all	 sorts	 of	 fruitless	 metaphysical
speculation	 about	 what	 quality	 or	 power	 inherent	 in	 the	 first	 object	 brings
about	 the	 second	 one.	 The	 former	 statement	 merely	 asks	 us	 to	 perform	 a
simple	mental	test:	imagine	a	world	without	the	earthquake	and	ask	whether	it
also	contains	a	 tsunami.	We	have	been	making	judgments	 like	this	since	we
were	 children,	 and	 the	 human	 species	 has	 been	 making	 them	 since
Thucydides	(and	probably	long	before).

Nevertheless,	philosophers	ignored	Hume’s	second	definition	for	most	of
the	nineteenth	and	twentieth	centuries.	Counterfactual	statements,	the	“would
haves,”	have	always	appeared	too	squishy	and	uncertain	to	satisfy	academics.
Instead,	 philosophers	 tried	 to	 rescue	 Hume’s	 first	 definition	 through	 the
theory	of	probabilistic	causation,	as	discussed	in	Chapter	1.

One	philosopher	who	defied	convention,	David	Lewis,	called	in	his	1973
book	Counterfactuals	for	abandoning	the	regularity	account	altogether	and	for
interpreting	“A	 has	 caused	B”	as	“B	would	not	have	occurred	 if	 not	 for	A.”
Lewis	asked,	“Why	not	take	counterfactuals	at	face	value:	as	statements	about
possible	alternatives	to	the	actual	situation?”

Like	Hume,	Lewis	was	evidently	impressed	by	the	fact	that	humans	make
counterfactual	 judgments	 without	 much	 ado,	 swiftly,	 comfortably,	 and
consistently.	We	can	assign	 them	 truth	values	and	probabilities	with	no	 less



confidence	 than	 we	 do	 for	 factual	 statements.	 In	 his	 view,	 we	 do	 this	 by
envisioning	“possible	worlds”	in	which	the	counterfactual	statements	are	true.

When	 we	 say,	 “Joe’s	 headache	 would	 have	 gone	 away	 if	 he	 had	 taken
aspirin,”	 we	 are	 saying	 (according	 to	 Lewis)	 that	 there	 are	 other	 possible
worlds	 in	which	Joe	did	take	an	aspirin	and	his	headache	went	away.	Lewis
argued	 that	we	 evaluate	 counterfactuals	 by	 comparing	 our	world,	where	 he
did	not	take	aspirin,	to	the	most	similar	world	in	which	he	did	take	an	aspirin.
Upon	 finding	 no	 headache	 in	 that	 world,	 we	 declare	 the	 counterfactual
statement	 to	 be	 true.	 “Most	 similar”	 is	 key.	 There	 may	 be	 some	 “possible
worlds”	 in	 which	 his	 headache	 did	 not	 go	 away—for	 example,	 a	 world	 in
which	he	 took	 the	aspirin	and	 then	bumped	his	head	on	 the	bathroom	door.
But	 that	 world	 contains	 an	 extra,	 adventitious	 circumstance.	 Among	 all
possible	worlds	in	which	Joe	took	aspirin,	the	one	most	similar	to	ours	would
be	one	not	where	he	bumped	his	head	but	where	his	headache	is	gone.

Many	of	Lewis’s	critics	pounced	on	the	extravagance	of	his	claims	for	the
literal	existence	of	many	other	possible	worlds.	“Mr.	Lewis	was	once	dubbed
a	 ‘mad-dog	modal	 realist’	 for	his	 idea	 that	any	 logically	possible	world	you
can	think	of	actually	exists,”	said	his	New	York	Times	obituary	in	2001.	“He
believed,	for	instance,	that	there	was	a	world	with	talking	donkeys.”

But	 I	 think	 that	 his	 critics	 (and	perhaps	Lewis	himself)	missed	 the	most
important	point.	We	do	not	need	to	argue	about	whether	such	worlds	exist	as
physical	or	even	metaphysical	entities.	If	we	aim	to	explain	what	people	mean
by	 saying	 “A	 causes	B,”	we	 need	 only	 postulate	 that	 people	 are	 capable	 of
generating	alternative	worlds	in	their	heads,	judging	which	world	is	“closer”
to	ours	and,	most	importantly,	doing	it	coherently	so	as	to	form	a	consensus.
Surely	 we	 could	 not	 communicate	 about	 counterfactuals	 if	 one	 person’s
“closer”	was	 another	 person’s	 “farther.”	 In	 this	 view,	Lewis’s	 appeal	 “Why
not	 take	 counterfactuals	 at	 face	 value?”	 called	 not	 for	 metaphysics	 but	 for
attention	to	the	amazing	uniformity	of	the	architecture	of	the	human	mind.

As	a	 licensed	Whiggish	philosopher,	 I	can	explain	 this	consistency	quite
well:	it	stems	from	the	fact	that	we	experience	the	same	world	and	share	the
same	mental	model	of	 its	 causal	 structure.	We	 talked	about	 this	 all	 the	way
back	 in	 Chapter	 1.	 Our	 shared	 mental	 models	 bind	 us	 together	 into
communities.	 We	 can	 therefore	 judge	 closeness	 not	 by	 some	 metaphysical
notion	of	“similarity”	but	by	how	much	we	must	 take	apart	and	perturb	our
shared	model	before	it	satisfies	a	given	hypothetical	condition	that	is	contrary
to	fact	(Joe	not	taking	aspirin).

In	 structural	models	we	 do	 a	 very	 similar	 thing,	 albeit	 embellished	with



more	mathematical	detail.	We	evaluate	expressions	like	“had	X	been	x”	in	the
same	way	 that	we	handled	 interventions	do(X	 =	x),	 by	deleting	 arrows	 in	 a
causal	 diagram	 or	 equations	 in	 a	 structural	model.	We	 can	 describe	 this	 as
making	 the	minimal	 alteration	 to	 a	 causal	 diagram	 needed	 to	 ensure	 that	X
equals	 x.	 In	 this	 respect,	 structural	 counterfactuals	 are	 compatible	 with
Lewis’s	idea	of	the	most	similar	possible	world.

Structural	 models	 also	 offer	 a	 resolution	 of	 a	 puzzle	 Lewis	 kept	 silent
about:	 How	 do	 humans	 represent	 “possible	 worlds”	 in	 their	 minds	 and
compute	 the	closest	one,	when	 the	number	of	possibilities	 is	 far	beyond	 the
capacity	of	the	human	brain?	Computer	scientists	call	this	the	“representation
problem.”	We	must	 have	 some	 extremely	 economical	 code	 to	 manage	 that
many	worlds.	Could	structural	models,	 in	some	shape	or	form,	be	the	actual
shortcut	that	we	use?	I	think	it	is	very	likely,	for	two	reasons.	First,	structural
causal	 models	 are	 a	 shortcut	 that	 works,	 and	 there	 aren’t	 any	 competitors
around	 with	 that	 miraculous	 property.	 Second,	 they	 were	 modeled	 on
Bayesian	 networks,	 which	 in	 turn	 were	 modeled	 on	 David	 Rumelhart’s
description	of	message	passing	in	the	brain.	It	is	not	too	much	of	a	stretch	to
think	that	40,000	years	ago,	humans	co-opted	the	machinery	in	their	brain	that
already	 existed	 for	 pattern	 recognition	 and	 started	 to	 use	 it	 for	 causal
reasoning.

Philosophers	 tend	 to	 leave	 it	 to	 psychologists	 to	make	 statements	 about
how	the	mind	does	things,	which	explains	why	the	questions	above	were	not
addressed	until	quite	recently.	However,	artificial	intelligence	(AI)	researchers
could	 not	 wait.	 They	 aimed	 to	 build	 robots	 that	 could	 communicate	 with
humans	about	alternate	scenarios,	credit	and	blame,	responsibility	and	regret.
These	 are	 all	 counterfactual	 notions	 that	 AI	 researchers	 had	 to	 mechanize
before	they	had	the	slightest	chance	of	achieving	what	they	call	“strong	AI”—
humanlike	intelligence.

With	these	motivations	I	entered	counterfactual	analysis	in	1994	(with	my
student	Alex	Balke).	Not	surprisingly,	the	algorithmization	of	counterfactuals
made	 a	 bigger	 splash	 in	 artificial	 intelligence	 and	 cognitive	 science	 than	 in
philosophy.	Philosophers	 tended	 to	view	structural	models	as	merely	one	of
many	 possible	 implementations	 of	 Lewis’s	 possible-worlds	 logic.	 I	 dare	 to
suggest	 that	 they	 are	much	more	 than	 that.	 Logic	 void	 of	 representation	 is
metaphysics.	 Causal	 diagrams,	 with	 their	 simple	 rules	 of	 following	 and
erasing	 arrows,	 must	 be	 close	 to	 the	 way	 that	 our	 brains	 represent
counterfactuals.

This	assertion	must	remain	unproven	for	the	time	being,	but	the	upshot	of



the	 long	 story	 is	 that	 counterfactuals	 have	 ceased	 to	 be	 mystical.	 We
understand	how	humans	manage	them,	and	we	are	ready	to	equip	robots	with
similar	capabilities	to	the	ones	our	ancestors	acquired	40,000	years	ago.

POTENTIAL	OUTCOMES,	STRUCTURAL	EQUATIONS,
AND	THE	ALGORITHMIZATION	OF	COUNTERFACTUALS

Just	a	year	after	the	release	of	Lewis’s	book,	and	independently	of	it,	Donald
Rubin	(Figure	8.2)	began	writing	a	series	of	papers	that	 introduced	potential
outcomes	 as	 a	 language	 for	 asking	 causal	 questions.	 Rubin,	 at	 that	 time	 a
statistician	 for	 the	 Educational	 Testing	 Service,	 single-handedly	 broke	 the
silence	 about	 causality	 that	 had	 persisted	 in	 statistics	 for	 seventy-five	 years
and	 legitimized	 the	 concept	 of	 counterfactuals	 in	 the	 eyes	 of	 many	 health
scientists.	It	is	impossible	to	overstate	the	importance	of	this	development.	It
provided	researchers	with	a	flexible	language	to	express	almost	every	causal
question	they	might	wish	to	ask,	at	both	the	population	and	individual	levels.

FIGURE	8.2.	Donald	Rubin	(right)	with	the	author	in	2014.	(Source:	Photo	courtesy	of

Grace	Hyun	Kim.)

In	the	Rubin	causal	model,	a	potential	outcome	of	a	variable	Y	is	simply
“the	value	that	Y	would	have	taken	for	individual	u,	had	X	been	assigned	the
value	x.”	That’s	a	lot	of	words,	so	it’s	often	convenient	to	write	this	quantity
more	compactly	as	YX	=	x(u).	Often	we	abbreviate	this	further	as	Yx(u)	if	it	is
apparent	from	the	context	what	variable	is	being	set	to	the	value	x.

To	appreciate	how	audacious	this	notation	is,	you	have	to	step	back	from
the	symbols	and	think	about	the	assumptions	they	embody.	By	writing	down
the	symbol	Yx,	Rubin	asserted	that	Y	definitely	would	have	taken	some	value
if	X	 had	 been	 x,	 and	 this	 has	 just	 as	much	 objective	 reality	 as	 the	 value	Y
actually	 did	 take.	 If	 you	 don’t	 buy	 this	 assumption	 (and	 I’m	 pretty	 sure
Heisenberg	wouldn’t),	you	can’t	use	potential	outcomes.	Also,	note	 that	 the
potential	outcome,	or	counterfactual,	 is	defined	at	 the	level	of	an	individual,
not	a	population.



The	 very	 first	 scientific	 appearance	 of	 a	 potential	 outcome	 came	 in	 the
master’s	 thesis	of	 Jerzy	Neyman,	written	 in	1923.	Neyman,	a	descendant	of
Polish	 nobility,	 had	 grown	up	 in	 exile	 in	Russia	 and	 did	 not	 set	 foot	 in	 his
native	land	until	1921,	when	he	was	twenty-seven	years	old.	He	had	received
a	 very	 strong	 mathematical	 education	 in	 Russia	 and	 would	 have	 liked	 to
continue	 research	 in	 pure	 mathematics,	 but	 it	 was	 easier	 for	 him	 to	 find
employment	as	a	statistician.	Much	 like	R.	A.	Fisher	 in	England,	he	did	his
first	 statistical	 research	 at	 an	 agricultural	 institute,	 a	 job	 for	 which	 he	 was
hugely	overqualified.	Not	only	was	he	the	only	statistician	in	the	institute,	but
he	 was	 really	 the	 only	 person	 in	 the	 country	 thinking	 about	 statistics	 as	 a
discipline.

Neyman’s	 first	mention	of	potential	outcomes	came	 in	 the	 context	of	 an
agricultural	experiment,	where	the	subscript	notation	represents	the	“unknown
potential	yield	of	the	i-th	variety	[of	a	given	seed]	on	the	respective	plot.”	The
thesis	remained	unknown	and	untranslated	into	English	until	1990.	However,
Neyman	 himself	 did	 not	 remain	 unknown.	 He	 arranged	 to	 spend	 a	 year	 at
Karl	Pearson’s	statistical	 laboratory	at	University	College	London,	where	he
made	 friends	with	 Pearson’s	 son	 Egon.	 The	 two	 kept	 in	 touch	 for	 the	 next
seven	 years,	 and	 their	 collaboration	 paid	 great	 dividends:	 the	 Neyman-
Pearson	approach	to	statistical	hypothesis	 testing	was	a	milestone	that	every
beginning	statistics	student	learns	about.

In	1933,	Karl	Pearson’s	long	autocratic	leadership	finally	came	to	an	end
with	his	retirement,	and	Egon	was	his	logical	successor—or	would	have	been,
if	 not	 for	 the	 singular	 problem	 of	 R.	 A.	 Fisher,	 by	 then	 the	 most	 famous
statistician	in	England.	The	university	came	up	with	a	unique	and	disastrous
solution,	dividing	Pearson’s	position	into	a	chair	of	statistics	(Egon	Pearson)
and	a	chair	of	eugenics	(Fisher).	Egon	wasted	no	time	hiring	his	Polish	friend.
Neyman	arrived	in	1934	and	almost	immediately	locked	horns	with	Fisher.

Fisher	 was	 already	 spoiling	 for	 a	 fight.	 He	 knew	 he	 was	 the	 world’s
leading	statistician	and	had	practically	invented	large	parts	of	the	subject,	yet
was	 forbidden	 from	 teaching	 in	 the	 statistics	 department.	 Relations	 were
extraordinarily	 tense.	 “The	 Common	 Room	 was	 carefully	 shared,”	 writes
Constance	Reid	in	her	biography	of	Neyman.	“Pearson’s	group	had	tea	at	4;
and	 at	 4:30,	 when	 they	 were	 safely	 out	 of	 the	 way,	 Fisher	 and	 his	 group
trooped	in.”

In	 1935,	 Neyman	 gave	 a	 lecture	 at	 the	 Royal	 Statistical	 Society	 titled
“Statistical	 Problems	 in	 Agricultural	 Experimentation,”	 in	 which	 he	 called
into	question	some	of	Fisher’s	own	methods	and	also,	incidentally,	discussed



the	idea	of	potential	outcomes.	After	Neyman	was	done,	Fisher	stood	up	and
told	 the	 society	 that	“he	had	hoped	 that	Dr.	Neyman’s	paper	would	be	on	a
subject	with	which	the	author	was	fully	acquainted.”

“[Neyman	had]	asserted	that	Fisher	was	wrong,”	wrote	Oscar	Kempthorne
years	later	about	the	incident.	“This	was	an	unforgivable	offense—Fisher	was
never	wrong	and	indeed	the	suggestion	that	he	might	be	was	treated	by	him	as
a	 deadly	 assault.	 Anyone	 who	 did	 not	 accept	 Fisher’s	 writing	 as	 the	 God-
given	truth	was	at	best	stupid	and	at	worst	evil.”	Neyman	and	Pearson	saw	the
extent	of	Fisher’s	fury	a	few	days	later,	when	they	went	to	the	department	in
the	 evening	 and	 found	 Neyman’s	 wooden	 models,	 with	 which	 he	 had
illustrated	 his	 lecture,	 strewn	 all	 over	 the	 floor.	 They	 concluded	 that	 only
Fisher	could	have	been	responsible	for	the	wreckage.

While	Fisher’s	 fit	 of	 rage	may	 seem	amusing	now,	his	 attitude	did	have
serious	 consequences.	 Of	 course	 he	 could	 not	 swallow	 his	 pride	 and	 use
Neyman’s	potential	outcome	notation,	even	though	it	would	have	helped	him
later	with	problems	of	mediation.	The	 lack	of	potential	outcome	vocabulary
led	him	and	many	other	 people	 into	 the	 so-called	Mediation	Fallacy,	which
we	will	discuss	in	Chapter	9.

At	 this	point	some	readers	might	still	 find	the	concept	of	counterfactuals
somewhat	mystical,	so	I’d	like	to	show	how	some	of	Rubin’s	followers	would
infer	 potential	 outcomes	 and	 contrast	 this	 model-free	 approach	 with	 the
structural	causal	model	approach.

Suppose	that	we	are	looking	at	a	certain	firm	to	see	whether	education	or
years	of	experience	is	a	more	important	factor	in	determining	an	employee’s
salary.	 We	 have	 collected	 some	 data	 on	 the	 existing	 salaries	 at	 this	 firm,
reproduced	in	Table	8.1.	We’re	letting	EX	 represent	years	of	experience,	ED
represent	 education,	 and	 S	 represent	 salary.	 We’re	 also	 assuming,	 for
simplicity,	just	three	levels	of	education:	0	=	high	school	degree,	1	=	college
degree,	2	=	graduate	degree.	Thus	SED	=	0(u),	or	S0(u),	represents	the	salary	of
individual	u	if	u	were	a	high	school	graduate	but	not	a	college	graduate,	and
S1(u)	 represents	 u’s	 salary	 if	 u	 were	 a	 college	 graduate.	 A	 typical
counterfactual	question	we	might	want	to	ask	is,	“What	would	Alice’s	salary
be	if	she	had	a	college	degree?”	In	other	words,	what	is	S1(Alice)?

The	first	thing	to	notice	about	Table	8.1	is	all	 the	missing	data,	 indicated
by	question	marks.	We	can	never	observe	more	than	one	potential	outcome	in
the	 same	 individual.	 Although	 obvious,	 nevertheless	 this	 statement	 is
important.	Statistician	Paul	Holland	once	called	it	the	“fundamental	problem
of	 causal	 inference,”	 a	 name	 that	 has	 stuck.	 If	 we	 could	 only	 fill	 in	 the



question	marks,	we	could	answer	all	our	causal	questions.

I	have	never	agreed	with	Holland’s	characterization	of	the	missing	values
in	 Table	 8.1	 as	 a	 “fundamental	 problem,”	 perhaps	 because	 I	 have	 rarely
described	 causal	 problems	 in	 terms	 of	 a	 table.	 But	 more	 fundamentally,
viewing	 causal	 inference	 as	 a	 missing-data	 problem	 can	 be	 terribly
misleading,	 as	 we	 will	 soon	 see.	 Observe	 that,	 aside	 from	 the	 decorative
headings	 of	 the	 last	 three	 columns,	 Table	 8.1	 is	 totally	 devoid	 of	 causal
information	 about	ED,	EX,	 and	 S—for	 example,	 whether	 education	 affects
salary	or	 the	other	way	around.	Worse	yet,	 it	does	not	allow	us	 to	 represent
such	 information	 when	 available.	 But	 for	 statisticians	 who	 perceive	 the
“fundamental	 problem”	 to	 be	missing	 data,	 such	 a	 table	 appears	 to	 present
endless	 opportunities.	 Indeed,	 if	 we	 look	 at	 S0,	 S1,	 and	 S2	 not	 as	 potential
outcomes	 but	 as	 ordinary	 variables,	 we	 have	 dozens	 of	 interpolation
techniques	 to	 fill	 in	 the	 blanks	 or,	 as	 statisticians	 would	 say,	 “impute	 the
missing	data,”	in	some	optimal	way.

TABLE	8.1.	Fictitious	data	for	potential	outcomes	example.

One	common	approach	is	matching.	We	look	for	pairs	of	individuals	who
are	well	matched	 in	 all	 variables	 except	 the	 one	 of	 interest	 and	 then	 fill	 in
their	 rows	 to	 match	 each	 other.	 The	 clearest	 case	 here	 is	 that	 of	 Bert	 and
Caroline,	 who	 match	 perfectly	 on	 experience.	 So	 we	 assume	 that	 Bert’s
salary,	 if	 he	 had	 a	 graduate	 degree,	 would	 be	 the	 same	 as	 Caroline’s
($97,000),	 and	 Caroline’s	 salary,	 if	 she	 had	 only	 an	 undergraduate	 degree,
would	be	the	same	as	Bert’s	($92,500).	Note	that	matching	invokes	the	same
idea	 as	 conditioning	 (or	 stratifying):	 we	 select	 for	 comparison	 groups	 that
share	 an	 observed	 characteristic	 and	 use	 the	 comparison	 to	 infer
characteristics	that	they	do	not	seem	to	share.

It	 is	 hard	 to	 estimate	 Alice’s	 salary	 this	 way	 because	 there	 is	 no	 good
match	 for	 her	 in	 the	 data	 I	 have	 given.	 Nevertheless,	 statisticians	 have



developed	 techniques	 of	 considerable	 subtlety	 to	 impute	missing	 data	 from
approximate	 matches,	 and	 Rubin	 has	 been	 a	 pioneer	 of	 this	 approach.
Unfortunately,	even	the	most	gifted	matchmaker	in	the	world	cannot	turn	data
into	potential	outcomes,	not	even	approximately.	 I	will	 show	below	 that	 the
correct	answer	depends	critically	on	whether	education	affects	experience	or
the	other	way	around,	information	nowhere	to	be	found	in	the	table.

A	 second	 possible	method	 is	 linear	 regression	 (not	 to	 be	 conflated	with
structural	 equations).	 In	 this	 approach	 we	 pretend	 that	 the	 data	 came	 from
some	unknown	random	source	and	use	standard	statistical	methods	to	find	the
line	 (or,	 in	 this	 case,	 plane)	 that	 best	 fits	 the	 data.	 The	 output	 of	 such	 an
approach	might	be	an	equation	that	looks	like	this:

S	=	$65,000	+	2,500	×	EX	+	5,000	×	ED									(8.1)

Equation	8.1	tells	us	that	(on	average)	the	base	salary	of	an	employee	with
no	experience	and	only	a	high	 school	diploma	 is	$65,000.	For	 each	year	of
experience,	 the	 salary	 increases	 by	 $2,500,	 and	 for	 each	 additional
educational	degree	(up	to	two),	the	salary	increases	by	$5,000.	Accordingly,	a
regression	 analyst	would	 claim,	 our	 estimate	 of	Alice’s	 salary,	 if	 she	 had	 a
college	degree,	is	$65,000	+	$2,500	×	6	+	$5,000	×	1	=	$85,000.

The	 ease	 and	 familiarity	 of	 such	 imputation	 techniques	 explain	 why
Rubin’s	conception	of	causal	inference	as	a	missing-data	problem	has	enjoyed
broad	 popularity.	Alas,	 as	 innocuous	 as	 these	 interpolation	methods	 appear,
they	are	 fundamentally	 flawed.	They	are	data	driven,	not	model	driven.	All
the	missing	data	are	 filled	 in	by	examining	other	values	 in	 the	 table.	As	we
have	 learned	 from	 the	Ladder	 of	Causation,	 any	 such	method	 is	 doomed	 to
start	 with;	 no	 methods	 based	 only	 on	 data	 (rung	 one)	 can	 answer
counterfactual	questions	(rung	three).

Before	 contrasting	 these	 methods	 with	 the	 structural	 causal	 model
approach,	 let	 us	 examine	 intuitively	 what	 goes	 wrong	 with	 model-blind
imputation.	 In	 particular,	 let	 us	 explain	why	Bert	 and	Caroline,	who	match
perfectly	in	experience,	may	in	fact	be	quite	incomparable	when	it	comes	to
comparing	 their	 potential	 outcomes.	 More	 surprising,	 a	 reasonable	 causal
story	 (fitting	 Table	 8.1)	 would	 show	 that	 the	 best	 match	 for	 Caroline	 for
Salary	would	be	someone	who	does	not	match	her	on	Experience.

The	 first	 key	 point	 to	 realize	 is	 that	 Experience	 is	 likely	 to	 depend	 on
Education.	 After	 all,	 those	 employees	who	 got	 an	 extra	 educational	 degree
took	four	years	of	their	lives	to	do	so.	Thus,	if	Caroline	had	only	one	degree
of	education	 (like	Bert),	 she	would	have	been	able	 to	use	 that	extra	 time	 to



gain	more	experience	compared	to	what	she	now	has.	This	would	have	given
her	equal	education	to	and	greater	experience	than	Bert.	We	can	thus	conclude
that	S1(Caroline)	>	S1(Bert),	contrary	to	what	naive	matching	would	predict.
We	 see	 that,	 once	 we	 have	 a	 causal	 story	 in	 which	 Education	 affects
Experience,	 it	 is	 inevitable	 that	 “matching”	 on	 Experience	 will	 create	 a
mismatch	on	potential	Salary.

Ironically,	 equal	 Experience,	 which	 started	 out	 as	 an	 invitation	 for
matching,	 has	 now	 turned	 into	 a	 loud	warning	 against	 it.	 Table	8.1	will,	 of
course,	continue	its	silence	about	such	dangers.	For	this	reason	I	cannot	share
Holland’s	enthusiasm	for	casting	causal	inference	as	a	missing-data	problem.
Quite	the	contrary.	Recent	work	of	Karthika	Mohan,	a	former	student	of	mine,
reveals	that	even	standard	problems	of	missing	data	require	causal	modeling
for	their	solution.

Now	 let’s	 see	 how	 a	 structural	 causal	model	would	 treat	 the	 same	 data.
First,	before	we	even	look	at	the	data,	we	draw	a	causal	diagram	(Figure	8.3).
The	 diagram	 encodes	 the	 causal	 story	 behind	 the	 data,	 according	 to	 which
Experience	 listens	 to	 Education	 and	 Salary	 listens	 to	 both.	 In	 fact,	 we	 can
already	 tell	 something	very	 important	 just	by	 looking	at	 the	diagram.	 If	our
model	were	wrong	and	EX	were	a	cause	of	ED,	 rather	 than	vice	versa,	 then
Experience	 would	 be	 a	 confounder,	 and	 matching	 employees	 with	 similar
experience	would	 be	 completely	 appropriate.	With	ED	 as	 the	 cause	 of	EX,
Experience	is	a	mediator.	As	you	surely	know	by	now,	mistaking	a	mediator
for	a	confounder	is	one	of	the	deadliest	sins	in	causal	inference	and	may	lead
to	 the	 most	 outrageous	 errors.	 The	 latter	 invites	 adjustment;	 the	 former
forbids	it.

FIGURE	8.3.	Causal	diagram	for	the	effect	of	education	(ED)	and	experience	(EX)	on

salary	(S).

So	 far	 in	 this	 book,	 I	 have	 used	 a	 very	 informal	word—“listening”—to
express	what	I	mean	by	the	arrows	in	a	causal	diagram.	But	now	it’s	time	to
put	a	little	bit	of	mathematical	meat	on	this	concept,	and	this	is	in	fact	where



structural	causal	models	differ	from	Bayesian	networks	or	regression	models.
When	I	say	that	Salary	listens	to	Education	and	Experience,	I	mean	that	it	is	a
mathematical	 function	 of	 those	 variables:	 S	 =	 fS(EX,	ED).	 But	 we	 need	 to
allow	for	individual	variations,	so	we	extend	this	function	to	read	S	=	fS(EX,
ED,	US),	where	US	 stands	 for	 “unobserved	variables	 that	 affect	 salary.”	We
know	these	variables	exist	(e.g.,	Alice	is	a	friend	of	the	company’s	president),
but	 they	are	 too	diverse	and	 too	numerous	 to	 incorporate	explicitly	 into	our
model.

Let’s	 see	 how	 this	 would	 play	 out	 in	 our	 education/experience/salary
example,	 assuming	 linear	 functions	 throughout.	 We	 can	 use	 the	 same
statistical	methods	as	before	to	find	the	best-fitting	linear	equation.	The	result
would	look	just	like	Equation	8.1	with	one	small	difference:

S	=	$65,000	+	2,500	×	EX	+	5,000	×	ED	+	US									(8.2)

However,	 the	 formal	 similarity	 between	 Equations	 8.1	 and	 8.2	 is
profoundly	deceptive;	their	interpretations	differ	like	night	and	day.	The	fact
that	we	chose	to	regress	S	on	ED	and	EX	in	Equation	8.1	in	no	way	implies
that	S	 listens	 to	ED	and	EX	 in	 the	 real	world.	That	 choice	was	purely	ours,
and	nothing	in	the	data	would	prevent	us	from	regressing	EX	on	ED	and	S	or
following	any	other	order.	(Remember	Francis	Galton’s	discovery	in	Chapter
2	that	regressions	are	cause	blind.)	We	lose	this	freedom	once	we	proclaim	an
equation	 to	be	“structural.”	 In	other	words,	 the	author	of	Equation	8.2	must
commit	to	writing	equations	that	mirror	his	belief	about	who	listens	to	whom
in	the	world.	In	our	case,	he	believes	that	S	truly	listens	to	EX	and	ED.	More
importantly,	the	absence	of	an	equation	ED	=	fED(EX,	S,	UED)	from	the	model
means	 that	 ED	 is	 believed	 to	 be	 oblivious	 to	 changes	 in	 EX	 or	 S.	 This
difference	 in	 commitment	 gives	 structural	 equations	 the	 power	 to	 support
counterfactuals,	a	power	denied	to	regression	equations.

In	compliance	with	Figure	8.3,	we	must	also	have	a	structural	equation	for
EX,	but	now	we	will	force	the	coefficient	of	S	to	zero,	to	reflect	the	absence	of
an	arrow	from	S	to	EX.	Once	we	estimate	the	coefficients	from	the	data,	the
equation	might	look	something	like	this:

EX	=	10–4	×	ED	+	UEX									(8.3)

This	equation	says	 that	 the	average	experience	for	people	with	no	advanced
degrees	is	 ten	years,	and	each	degree	of	education	(up	to	two)	decreases	EX
by	 four	years	on	average.	Again,	note	 the	key	difference	between	 structural
and	regression	equations:	variable	S	does	not	enter	into	Equation	8.3,	despite
the	 fact	 that	 S	 and	EX	 are	 likely	 to	 be	 highly	 correlated.	 This	 reflects	 the



analyst’s	belief	 that	 the	 experience	EX	 acquired	 by	 any	 individual	 is	 totally
unaffected	by	his	current	salary.

Now	 let’s	 demonstrate	 how	 to	 derive	 counterfactuals	 from	 a	 structural
model.	To	estimate	Alice’s	salary	if	she	had	a	college	education,	we	perform
three	steps:

1.	 (Abduction)	 Use	 the	 data	 about	 Alice	 and	 about	 the	 other
employees	 to	 estimate	Alice’s	 idiosyncratic	 factors,	US(Alice)
and	UEX(Alice).

2.	(Action)	Use	the	do-operator	to	change	the	model	to	reflect	the
counterfactual	assumption	being	made,	in	this	case	that	she	has
a	college	degree:	ED(Alice)	=	1.

3.	 (Prediction)	 Calculate	 Alice’s	 new	 salary	 using	 the	 modified
model	 and	 the	 updated	 information	 about	 the	 exogenous
variables	US(Alice),	UEX(Alice),	 and	 ED(Alice).	 This	 newly
calculated	salary	is	equal	to	SED	=	1(Alice).

For	step	1,	we	observe	from	the	data	that	EX(Alice)	=	6	and	ED(Alice)	=	0.
We	substitute	these	values	into	Equations	8.2	and	8.3.	The	equations	then	tell
us	 Alice’s	 idiosyncratic	 factors:	US(Alice)	 =	 $1,000	 and	UEX(Alice)	 =	 –4.
This	represents	everything	that	is	unique,	special,	and	wonderful	about	Alice.
Whatever	that	is,	it	adds	$1,000	to	her	predicted	salary.

Step	2	 tells	us	 to	use	 the	do-operator	 to	erase	 the	arrows	pointing	 to	 the
variable	that	is	being	set	to	a	counterfactual	value	(Education)	and	set	Alice’s
Education	 to	 a	 college	 degree	 (Education	 =	 1).	 In	 this	 example,	 Step	 2	 is
trivial,	 because	 there	 are	 no	 arrows	 pointing	 to	 Education	 and	 hence	 no
arrows	to	erase.	In	more	complicated	models,	though,	this	step	of	erasing	the
arrows	 cannot	 be	 left	 out,	 because	 it	 affects	 the	 computation	 in	 Step	 3.
Variables	 that	 might	 have	 affected	 the	 outcome	 through	 the	 intervened
variable	will	no	longer	be	allowed	to	do	so.

Finally,	Step	3	says	to	update	the	model	to	reflect	the	new	information	that
US	=	$1,000,	UEX	=	–4,	and	ED	=	1.	First	we	use	Equation	8.3	to	recompute
what	Alice’s	Experience	would	be	if	she	had	gone	to	college:	EXED	=	1(Alice)
=	10	–	4	–	4	=	2	years.	Then	we	use	Equation	8.2	to	recompute	her	potential
Salary:

SED	=	1(Alice)	=	$65,000	+	2,500	×	2	+	5,000	×	1	+	1,000	=	$76,000.



Our	 result,	S1(Alice)	 =	 $76,000,	 is	 a	 valid	 estimate	 of	Alice’s	would-be
salary;	 that	 is,	 the	 two	 will	 coincide	 if	 the	 model	 assumptions	 are	 valid.
Because	 this	 example	 entails	 a	 very	 simple	 causal	 model	 and	 very	 simple
(linear)	 functions,	 the	 differences	 between	 it	 and	 the	 data-driven	 regression
method	 may	 seem	 rather	 minor.	 But	 the	 minor	 differences	 on	 the	 surface
reflect	 vast	 differences	 underneath.	 Whatever	 counterfactual	 (potential)
outcome	 we	 obtain	 from	 the	 structural	 method	 follows	 logically	 from	 the
assumptions	displayed	 in	 the	model,	while	 the	answer	obtained	by	 the	data-
driven	 method	 is	 as	 whimsical	 as	 spurious	 correlations	 because	 it	 leaves
important	modeling	assumptions	unaccounted	for.

This	example	has	forced	us	to	go	further	into	the	“nuts	and	bolts”	of	causal
models	 than	we	 have	 previously	 done	 in	 this	 book.	But	 let	me	 step	 back	 a
little	 to	 celebrate	 and	 appreciate	 the	 miracle	 that	 came	 into	 being	 through
Alice’s	 example.	Using	 a	 combination	 of	 data	 and	model,	we	were	 able	 to
predict	 the	 behavior	 of	 an	 individual	 (Alice)	 under	 totally	 hypothetical
conditions.	Of	 course,	 there	 is	 no	 such	 thing	 as	 a	 free	 lunch:	we	 got	 these
strong	 results	because	we	made	strong	assumptions.	 In	addition	 to	asserting
the	causal	relationships	between	the	observed	variables,	we	also	assumed	that
the	 functional	 relationships	 were	 linear.	 But	 the	 linearity	 matters	 less	 here
than	knowing	what	those	specific	functions	are.	That	enabled	us	to	compute
Alice’s	idiosyncrasies	from	her	observed	characteristics	and	update	the	model
as	required	in	the	three-step	procedure.

At	the	risk	of	adding	a	sober	note	to	our	celebration,	I	have	to	tell	you	that
this	 functional	 information	will	not	always	be	available	 to	us	 in	practice.	 In
general,	we	 call	 a	model	 “completely	 specified”	 if	 the	 functions	 behind	 the
arrows	 are	 known	 and	 “partially	 specified”	 otherwise.	 For	 instance,	 as	 in
Bayesian	 networks,	 we	 may	 only	 know	 probabilistic	 relationships	 between
parents	and	children	in	the	graph.	If	the	model	is	partially	specified,	we	may
not	be	able	to	estimate	Alice’s	salary	exactly;	instead	we	may	have	to	make	a
probability-interval	 statement,	 such	 as	 “There	 is	 a	 10	 to	 20	 percent	 chance
that	 her	 salary	would	 be	 $76,000.”	But	 even	 such	 probabilistic	 answers	 are
good	 enough	 for	 many	 applications.	 Moreover,	 it	 is	 truly	 remarkable	 how
much	information	we	can	extract	from	the	causal	diagram	even	when	we	have
no	information	on	the	specific	functions	lying	behind	the	arrows	or	only	very
general	 information,	such	as	the	“monotonicity”	assumption	we	encountered
in	the	last	chapter.

Steps	1	to	3	above	can	be	summed	up	in	what	I	call	the	“first	law	of	causal
inference”:	Yx(u)	=	YMx(u).	This	 is	 the	 same	 rule	 that	we	used	 in	 the	 firing



squad	example	in	Chapter	1,	except	that	the	functions	are	different.	The	first
law	 says	 that	 the	 potential	 outcome	 Yx(u)	 can	 be	 imputed	 by	 going	 to	 the
model	Mx	(with	arrows	into	X	deleted)	and	computing	the	outcome	Y(u)	there.
All	 estimable	quantities	on	 rungs	 two	and	 three	of	 the	Ladder	of	Causation
follow	from	there.	 In	short,	 the	 reduction	of	counterfactuals	 to	an	algorithm
allows	us	 to	conquer	as	much	 territory	 from	rung	 three	as	mathematics	will
permit—but,	of	course,	not	a	bit	more.

THE	VIRTUE	OF	SEEING	YOUR	ASSUMPTIONS

The	SCM	method	I	have	shown	for	computing	counterfactuals	is	not	the	same
method	that	Rubin	would	use.	A	major	point	of	difference	between	us	is	the
use	 of	 causal	 diagrams.	 They	 allow	 researchers	 to	 represent	 causal
assumptions	 in	 terms	 that	 they	 can	 understand	 and	 then	 treat	 all
counterfactuals	as	derived	properties	of	their	world	model.	The	Rubin	causal
model	 treats	 counterfactuals	 as	 abstract	 mathematical	 objects	 that	 are
managed	by	algebraic	machinery	but	not	derived	from	a	model.

Deprived	 of	 a	 graphical	 facility,	 the	 user	 of	 the	 Rubin	 causal	 model	 is
usually	 asked	 to	 accept	 three	 assumptions.	 The	 first	 one,	 called	 the	 “stable
unit	 treatment	 value	 assumption,”	 or	 SUTVA,	 is	 reasonably	 transparent.	 It
says	 that	 each	 individual	 (or	 “unit,”	 the	 preferred	 term	 of	 causal	modelers)
will	have	the	same	effect	of	treatment	regardless	of	what	treatment	the	other
individuals	 (or	“units”)	 receive.	 In	many	cases,	barring	epidemics	and	other
collective	 interactions,	 this	 makes	 perfectly	 good	 sense.	 For	 example,
assuming	headache	is	not	contagious,	my	response	to	aspirin	will	not	depend
on	whether	Joe	receives	aspirin.

The	 second	 assumption	 in	 Rubin’s	 model,	 also	 benign,	 is	 called
“consistency.”	 It	 says	 that	 a	 person	 who	 took	 aspirin	 and	 recovered	 would
also	 recover	 if	 given	 aspirin	 by	 experimental	 design.	 This	 reasonable
assumption,	which	is	a	theorem	in	the	SCM	framework,	says	in	effect	that	the
experiment	is	free	of	placebo	effects	and	other	imperfections.

But	 the	 major	 assumption	 that	 potential	 outcome	 practitioners	 are
invariably	required	to	make	is	called	“ignorability.”	It	 is	more	technical,	but
it’s	 the	 crucial	 part	 of	 the	 transaction,	 for	 it	 is	 in	 essence	 the	 same	 thing	 as
Jamie	Robins	and	Sander	Greenland’s	condition	of	exchangeability	discussed
in	Chapter	 4.	 Ignorability	 expresses	 this	 same	 requirement	 in	 terms	 of	 the
potential	 outcome	 variable	 Yx.	 It	 requires	 that	 Yx	 be	 independent	 of	 the



treatment	 actually	 received,	 namely	X,	 given	 the	 values	 of	 a	 certain	 set	 of
(de)confounding	 variables	Z.	 Before	 exploring	 its	 interpretation,	 we	 should
acknowledge	 that	 any	 assumption	 expressed	 as	 conditional	 independence
inherits	 a	 large	 body	 of	 familiar	 mathematical	 machinery	 developed	 by
statisticians	 for	 ordinary	 (noncounterfactual)	 variables.	 For	 example,
statisticians	 routinely	 use	 rules	 for	 deciding	 when	 one	 conditional
independence	 follows	 from	 another.	 To	 Rubin’s	 credit,	 he	 recognized	 the
advantages	of	 translating	 the	causal	notion	of	“nonconfoundedness”	 into	 the
syntax	 of	 probability	 theory,	 albeit	 on	 counterfactual	 variables.	 The
ignorability	 assumption	 makes	 the	 Rubin	 causal	 model	 actually	 a	 model;
Table	8.1	in	itself	is	not	a	model	because	it	contains	no	assumptions	about	the
world.

Unfortunately,	 I	 have	 yet	 to	 find	 a	 single	 person	who	 can	 explain	what
ignorability	 means	 in	 a	 language	 spoken	 by	 those	 who	 need	 to	 make	 this
assumption	or	assess	its	plausibility	in	a	given	problem.	Here	is	my	best	try.
The	assignment	of	patients	to	either	treatment	or	control	is	ignorable	if,	within
any	 stratum	 of	 the	 confounder	 Z,	 patients	 who	 would	 have	 one	 potential
outcome,	Yx	=	y,	are	just	as	likely	to	be	in	the	treatment	or	control	group	as
the	 patients	 who	 would	 have	 a	 different	 potential	 outcome,	 Yx	 =	 y′.	 This
definition	 is	 perfectly	 legitimate	 for	 someone	 in	 possession	 of	 a	 probability
function	over	counterfactuals.	But	how	is	a	biologist	or	economist	with	only
scientific	knowledge	for	guidance	supposed	 to	assess	whether	 this	 is	 true	or
not?	More	concretely,	how	is	a	scientist	 to	assess	whether	ignorability	holds
in	any	of	the	examples	discussed	in	this	book?

To	understand	the	difficulty,	let	us	attempt	to	apply	this	explanation	to	our
example.	 To	 determine	 if	 ED	 is	 ignorable	 (conditional	 on	 EX),	 we	 are
supposed	 to	 judge	whether	employees	who	would	have	one	potential	salary,
say	S1	=	s,	are	just	as	likely	to	have	one	level	of	education	as	the	employees
who	would	have	a	different	potential	salary,	say	S1	=	s′.	If	you	think	that	this
sounds	 circular,	 I	 can	 only	 agree	 with	 you!	We	 want	 to	 determine	 Alice’s
potential	 salary,	 and	 even	before	we	 start—even	before	we	get	 a	hint	 about
the	answer—we	are	supposed	to	speculate	on	whether	the	result	is	dependent
or	 independent	 of	 ED,	 in	 every	 stratum	 of	 EX.	 It	 is	 quite	 a	 cognitive
nightmare.

As	 it	 turns	 out,	 ED	 in	 our	 example	 is	 not	 ignorable	 with	 respect	 to	 S,
conditional	on	EX,	 and	 this	 is	why	 the	matching	approach	 (setting	Bert	and
Caroline	equal)	would	yield	the	wrong	answer	for	their	potential	salaries.	In
fact,	 their	 estimates	 should	 differ	 by	 an	 amount	 S1(Bert)–S1(Caroline)	 =



$5,000.	(The	reader	should	be	able	to	show	this	from	the	numbers	in	Table	8.1
and	the	three-step	procedure.)	I	will	now	show	that	with	the	help	of	a	causal
diagram,	a	student	could	see	immediately	that	ED	is	not	ignorable	and	would
not	attempt	matching	here.	Lacking	a	diagram,	a	student	would	be	tempted	to
assume	that	ignorability	holds	by	default	and	would	fall	into	this	trap.	(This	is
not	 a	 speculation.	 I	 borrowed	 the	 idea	 for	 this	 example	 from	 an	 article	 in
Harvard	Law	Review	where	 the	 story	was	 essentially	 the	 same	as	 in	Figure
8.3	and	the	author	did	use	matching.)

Here	 is	 how	 we	 can	 use	 a	 causal	 diagram	 to	 test	 for	 (conditional)
ignorability.	To	determine	if	X	is	ignorable	relative	to	outcome	Y,	conditional
on	a	set	Z	of	matching	variables,	we	need	only	test	to	see	if	Z	blocks	all	the
back-door	paths	between	X	and	Y	and	no	member	of	Z	is	a	descendant	of	X.	It
is	 as	 simple	 as	 that!	 In	 our	 example,	 the	 proposed	 matching	 variable
(Experience)	blocks	all	the	back-door	paths	(because	there	aren’t	any),	but	it
fails	 the	 test	 because	 it	 is	 a	 descendant	 of	 Education.	 Therefore	ED	 is	 not
ignorable,	 and	 EX	 cannot	 be	 used	 for	 matching.	 No	 elaborate	 mental
gymnastics	 are	 needed,	 just	 a	 look	 at	 a	 diagram.	 Never	 is	 a	 researcher
required	 to	 mentally	 assess	 how	 likely	 a	 potential	 outcome	 is	 given	 one
treatment	or	another.

Unfortunately,	 Rubin	 does	 not	 consider	 causal	 diagrams	 to	 “aid	 the
drawing	of	causal	 inferences.”	Therefore,	 researchers	who	follow	his	advice
will	be	deprived	of	 this	 test	 for	 ignorability	and	will	 either	have	 to	perform
formidable	 mental	 gymnastics	 to	 convince	 themselves	 that	 the	 assumption
holds	 or	 else	 simply	 accept	 the	 assumption	 as	 a	 “black	 box.”	 Indeed,	 a
prominent	 potential	 outcome	 researcher,	Marshall	 Joffe,	 wrote	 in	 2010	 that
ignorability	 assumptions	 are	 usually	 made	 because	 they	 justify	 the	 use	 of
available	statistical	methods,	not	because	they	are	truly	believed.

Closely	related	to	transparency	is	the	notion	of	testability,	which	has	come
up	several	times	in	this	book.	A	model	cast	as	a	causal	diagram	can	easily	be
tested	 for	 compatibility	 with	 the	 data,	 whereas	 a	 model	 cast	 in	 potential
outcome	 language	 lacks	 this	 feature.	 The	 test	 goes	 like	 this:	 whenever	 all
paths	between	X	and	Y	in	the	diagram	are	blocked	by	a	set	of	nodes	Z,	then	in
the	 data	 X	 and	 Y	 should	 be	 independent,	 conditional	 on	 Z.	 This	 is	 the	 d-
separation	property	mentioned	in	Chapter	7,	which	allows	us	to	reject	a	model
whenever	 the	 independence	 fails	 to	 show	 up	 in	 the	 data.	 In	 contrast,	 if	 the
same	 model	 is	 expressed	 in	 the	 language	 of	 potential	 outcomes	 (i.e.,	 as	 a
collection	of	ignorability	statements),	we	lack	the	mathematical	machinery	to
unveil	the	independencies	that	the	model	entails,	and	researchers	are	unable	to
subject	 the	model	 to	 a	 test.	 It	 is	 hard	 to	 understand	 how	 potential	 outcome



researchers	managed	 to	 live	with	 this	deficiency	without	 rebelling.	My	only
explanation	is	that	they	were	kept	away	from	graphical	tools	for	so	long	that
they	forgot	that	causal	models	can	and	should	be	testable.

Now	I	must	apply	the	same	standards	of	transparency	to	myself	and	say	a
little	bit	more	about	the	assumptions	embodied	in	a	structural	causal	model.

Remember	 the	 story	 of	 Abraham	 that	 I	 related	 earlier?	 Abraham’s	 first
response	to	the	news	of	Sodom’s	imminent	destruction	was	to	look	for	a	dose-
response	 relationship,	or	a	 response	 function,	 relating	 the	wickedness	of	 the
city	to	its	punishment.	It	was	a	sound	scientific	instinct,	but	I	suspect	few	of
us	would	have	been	calm	enough	to	react	that	way.

The	response	function	is	the	key	ingredient	that	gives	SCMs	the	power	to
handle	 counterfactuals.	 It	 is	 implicit	 in	Rubin’s	potential	outcome	paradigm
but	 a	 major	 point	 of	 difference	 between	 SCMs	 and	 Bayesian	 networks,
including	causal	Bayesian	networks.	In	a	probabilistic	Bayesian	network,	the
arrows	 into	Y	mean	 that	 the	probability	of	Y	 is	 governed	by	 the	 conditional
probability	tables	for	Y,	given	observations	of	its	parent	variables.	The	same
is	 true	 for	 causal	Bayesian	networks,	 except	 that	 the	conditional	probability
tables	specify	the	probability	of	Y	given	interventions	on	the	parent	variables.
Both	 models	 specify	 probabilities	 for	 Y,	 not	 a	 specific	 value	 of	 Y.	 In	 a
structural	 causal	 model,	 there	 are	 no	 conditional	 probability	 tables.	 The
arrows	simply	mean	Y	 is	a	 function	of	 its	parents,	as	well	as	 the	exogenous
variable	UY:

Y	=	fY(X,	A,	B,	C,…,	UY)									(8.4)

Thus,	Abraham’s	 instinct	was	sound.	To	 turn	a	noncausal	Bayesian	network
into	 a	 causal	 model—or,	 more	 precisely,	 to	 make	 it	 capable	 of	 answering
counterfactual	queries—we	need	a	dose-response	relationship	at	each	node.

This	 realization	 did	 not	 come	 to	 me	 easily.	 Even	 before	 delving	 into
counterfactuals,	I	tried	for	a	very	long	time	to	formulate	causal	models	using
conditional	probability	tables.	One	obstacle	I	faced	was	cyclic	models,	which
were	 totally	 resistant	 to	 conditional	 probability	 formulations.	 Another
obstacle	 was	 that	 of	 coming	 up	with	 a	 notation	 to	 distinguish	 probabilistic
Bayesian	networks	from	causal	ones.	In	1991,	it	suddenly	hit	me	that	all	the
difficulties	would	vanish	if	we	made	Y	a	function	of	its	parent	variables	and
let	 the	UY	 term	 handle	 all	 the	 uncertainties	 concerning	 Y.	 At	 the	 time,	 it
seemed	like	a	heresy	against	my	own	teaching.	After	devoting	several	years	to
the	 cause	 of	 probabilities	 in	 artificial	 intelligence,	 I	 was	 now	 proposing	 to
take	a	step	backward	and	use	a	nonprobabilistic,	quasi-deterministic	model.	I



can	 still	 remember	 my	 student	 at	 the	 time,	 Danny	 Geiger,	 asking
incredulously,	 “Deterministic	 equations?	 Truly	 deterministic?”	 It	 was	 as	 if
Steve	Jobs	had	just	told	him	to	buy	a	PC	instead	of	a	Mac.	(This	was	1990!)

On	 the	 surface,	 there	 was	 nothing	 revolutionary	 about	 these	 equations.
Economists	and	sociologists	had	been	using	such	models	since	the	1950s	and
1960s	 and	 calling	 them	 structural	 equation	 models	 (SEMs).	 But	 this	 name
signaled	 controversy	 and	 confusion	 over	 the	 causal	 interpretation	 of	 the
equations.	 Over	 time,	 economists	 lost	 sight	 of	 the	 fact	 that	 the	 pioneers	 of
these	 models,	 Trygve	 Haavelmo	 in	 economics	 and	 Otis	 Dudley	 Duncan	 in
sociology,	had	intended	them	to	represent	causal	relationships.	They	began	to
confuse	structural	equations	with	regression	lines,	thus	stripping	the	substance
from	 the	 form.	 For	 example,	 in	 1988,	 when	 David	 Freedman	 challenged
eleven	SEM	researchers	to	explain	how	to	apply	interventions	to	a	structural
equation	model,	not	one	of	them	could.	They	could	tell	you	how	to	estimate
the	 coefficients	 from	 data,	 but	 they	 could	 not	 tell	 you	 why	 anyone	 should
bother.	 If	 the	 response-function	 interpretation	 I	presented	between	1990	and
1994	 did	 anything	 new,	 it	was	 simply	 to	 restore	 and	 formalize	Haavelmo’s
and	 Duncan’s	 original	 intentions	 and	 lay	 before	 their	 disciples	 the	 bold
conclusions	that	follow	from	those	intentions	if	you	take	them	seriously.

Some	 of	 these	 conclusions	 would	 be	 considered	 astounding,	 even	 by
Haavelmo	and	Duncan.	Take	for	example	the	idea	that	from	every	SEM,	no
matter	 how	 simple,	 we	 can	 compute	 all	 the	 counterfactuals	 that	 one	 can
imagine	 among	 the	 variables	 in	 the	 model.	 Our	 ability	 to	 compute	 Alice’s
potential	salary,	had	she	had	college	education,	followed	from	this	idea.	Even
today	modern-day	economists	have	not	internalized	this	idea.

One	 other	 important	 difference	 between	 SEMs	 and	 SCMs,	 besides	 the
middle	letter,	is	that	the	relationship	between	causes	and	effects	in	an	SCM	is
not	 necessarily	 linear.	 The	 techniques	 that	 emerge	 from	 SCM	 analysis	 are
valid	for	nonlinear	as	well	as	linear	functions,	discrete	as	well	as	continuous
variables.

Linear	 structural	 equation	 models	 have	 many	 advantages	 and	 many
disadvantages.	 From	 the	 viewpoint	 of	 methodology,	 they	 are	 seductively
simple.	They	can	be	estimated	 from	observational	data	by	 linear	 regression,
and	you	can	choose	between	dozens	of	statistical	software	packages	to	do	this
for	you.

On	 the	 other	 hand,	 linear	models	 cannot	 represent	 dose-response	 curves
that	are	not	straight	 lines.	They	cannot	represent	 threshold	effects,	such	as	a
drug	 that	 has	 increasing	 effects	 up	 to	 a	 certain	 dosage	 and	 then	 no	 further



effect.	 They	 also	 cannot	 represent	 interactions	 between	 variables.	 For
instance,	 a	 linear	 model	 cannot	 describe	 a	 situation	 in	 which	 one	 variable
enhances	or	 inhibits	 the	effect	of	 another	variable.	 (For	example,	Education
might	enhance	the	effect	of	Experience	by	putting	the	individual	in	a	faster-
track	job	that	gets	bigger	annual	raises.)

While	debates	about	 the	appropriate	assumptions	 to	make	are	 inevitable,
our	main	message	 is	quite	 simple:	Rejoice!	With	a	 fully	 specified	structural
causal	model,	entailing	a	causal	diagram	and	all	 the	 functions	behind	 it,	we
can	 answer	 any	 counterfactual	 query.	 Even	 with	 a	 partial	 SCM,	 in	 which
some	variables	are	hidden	or	the	dose-response	relationships	are	unknown,	we
can	 still	 in	many	 cases	 answer	 our	 query.	The	next	 two	 sections	 give	 some
examples.

COUNTERFACTUALS	AND	THE	LAW

In	principle,	counterfactuals	should	find	easy	application	in	the	courtroom.	I
say	“in	principle”	because	the	legal	profession	is	very	conservative	and	takes
a	long	time	to	accept	new	mathematical	methods.	But	using	counterfactuals	as
a	mode	of	argument	is	actually	very	old	and	known	in	the	legal	profession	as
“but-for	causation.”

The	Model	Penal	Code	expresses	the	“but-for”	test	as	follows:	“Conduct	is
the	cause	of	a	result	when:	(a)	it	is	an	antecedent	but	for	which	the	result	in
question	would	not	have	occurred.”	If	the	defendant	fired	a	gun	and	the	bullet
struck	and	killed	 the	victim,	 the	 firing	of	 the	gun	 is	 a	but-for,	 or	necessary,
cause	of	the	death,	since	the	victim	would	be	alive	if	not	for	the	firing.	But-for
causes	can	also	be	indirect.	If	Joe	blocks	a	building’s	fire	exit	with	furniture,
and	Judy	dies	 in	a	fire	after	she	could	not	 reach	 the	exit,	 then	Joe	 is	 legally
responsible	for	her	death	even	though	he	did	not	light	the	fire.

How	 can	 we	 express	 necessary	 or	 but-for	 causes	 in	 terms	 of	 potential
outcomes?	If	we	let	the	outcome	Y	be	“Judy’s	death”	(with	Y	=	0	if	Judy	lives
and	Y	=	1	if	Judy	dies)	and	the	treatment	X	be	“Joe’s	blocking	the	fire	escape”
(with	 X	 =	 0	 if	 he	 does	 not	 block	 it	 and	 X	 =	 1	 if	 he	 does),	 then	 we	 are
instructed	to	ask	the	following	question:

Given	that	we	know	the	fire	escape	was	blocked	(X	=	1)	and	Judy	died
(Y	=	1),	what	is	the	probability	that	Judy	would	have	lived	(Y	=	0)	if	X
had	been	0?

Symbolically,	the	probability	we	want	to	evaluate	is	P(YX	=	0	=	0	|	X	=	1,	Y	=



1).	Because	this	expression	is	rather	cumbersome,	I	will	later	abbreviate	it	as
“PN,”	 the	 probability	 of	 necessity	 (i.e.,	 the	 probability	 that	 X	 =	 1	 is	 a
necessary	or	but-for	cause	of	Y	=	1).

Note	 that	 the	 probability	 of	 necessity	 involves	 a	 contrast	 between	 two
different	worlds:	 the	actual	world	where	X	=	1	and	 the	counterfactual	world
where	X	=	0	(expressed	by	the	subscript	X	=	0).	 In	fact,	hindsight	(knowing
what	 happened	 in	 the	 actual	 world)	 is	 a	 critical	 distinction	 between
counterfactuals	 (rung	 three	 of	 the	 Ladder	 of	 Causation)	 and	 interventions
(rung	 two).	Without	hindsight,	 there	 is	no	difference	between	P(YX	 =	 0	 =	 0)
and	P(Y	 =	 0	 |	 do(X	 =	 0)).	 Both	 express	 the	 probability	 that,	 under	 normal
conditions,	Judy	will	be	alive	if	we	ensure	that	the	exit	is	not	blocked;	they	do
not	 mention	 the	 fire,	 Judy’s	 death,	 or	 the	 blocked	 exit.	 But	 hindsight	 may
change	our	estimate	of	the	probabilities.	Suppose	we	observe	that	X	=	1	and	Y
=	1	(hindsight).	Then	P(YX	=	0	=	0	|	X	=	1,	Y	=	1)	is	not	the	same	as	P(YX	=	0	=
0	 |	 X	 =	 1).	 Knowing	 that	 Judy	 died	 (Y	 =	 1)	 gives	 us	 information	 on	 the
circumstances	 that	 we	 would	 not	 get	 just	 by	 knowing	 that	 the	 door	 was
blocked	(X	=	1).	For	one	thing,	it	is	evidence	of	the	strength	of	the	fire.

In	fact,	it	can	be	shown	that	there	is	no	way	to	capture	P(YX	=	0	=	0	|	X	=	1,
Y	=	1)	in	a	do-expression.	While	this	may	seem	like	a	rather	arcane	point,	it
does	 give	 mathematical	 proof	 that	 counterfactuals	 (rung	 three)	 lie	 above
interventions	(rung	two)	on	the	Ladder	of	Causation.

In	 the	 last	 few	 paragraphs,	 we	 have	 almost	 surreptitiously	 introduced
probabilities	 into	 our	 discussion.	 Lawyers	 have	 long	 understood	 that
mathematical	certainty	is	 too	high	a	standard	of	proof.	For	criminal	cases	in
the	United	States,	the	Supreme	Court	in	1880	established	that	guilt	has	to	be
proven	“to	the	exclusion	of	all	reasonable	doubt.”	The	court	said	not	“beyond
all	doubt”	or	“beyond	a	shadow	of	a	doubt”	but	beyond	reasonable	doubt.	The
Supreme	 Court	 has	 never	 given	 a	 precise	 definition	 of	 that	 term,	 but	 one
might	 conjecture	 that	 there	 is	 some	 threshold,	 perhaps	 99	 percent	 or	 99.9
percent	probability	of	guilt,	above	which	doubt	becomes	unreasonable	and	it
is	 in	society’s	 interest	 to	 lock	 the	defendant	up.	 In	civil	 rather	 than	criminal
proceedings,	 the	 standard	 of	 proof	 is	 somewhat	 clearer.	 The	 law	 requires	 a
“preponderance	 of	 evidence”	 that	 the	 defendant	 caused	 the	 injury,	 and	 it
seems	reasonable	to	interpret	this	to	mean	that	the	probability	is	greater	than
50	percent.

Although	but-for	causation	is	generally	accepted,	lawyers	have	recognized
that	 in	 some	 cases	 it	 might	 lead	 to	 a	 miscarriage	 of	 justice.	 One	 classic
example	is	the	“falling	piano”	scenario,	where	the	defendant	fires	a	shot	at	the



victim	and	misses,	and	in	the	process	of	fleeing	the	scene,	the	victim	happens
to	 run	 under	 a	 falling	 piano	 and	 is	 killed.	By	 the	 but-for	 test	 the	 defendant
would	be	guilty	of	murder,	because	the	victim	would	not	have	been	anywhere
near	the	falling	piano	if	he	hadn’t	been	running	away.	But	our	intuition	says
that	 the	 defendant	 is	 not	 guilty	 of	 murder	 (though	 he	 may	 be	 guilty	 of
attempted	murder),	because	there	was	no	way	that	he	could	have	anticipated
the	falling	piano.	A	lawyer	would	say	that	 the	piano,	not	 the	gunshot,	 is	 the
proximate	cause	of	death.

The	doctrine	of	proximate	cause	is	much	more	obscure	than	but-for	cause.
The	Model	Penal	Code	 says	 that	 the	outcome	should	not	be	“too	 remote	or
accidental	in	its	occurrence	to	have	a	[just]	bearing	on	the	actor’s	liability	or
the	gravity	of	his	offense.”	At	present	this	determination	is	left	to	the	intuition
of	 the	 judge.	 I	would	 suggest	 that	 it	 is	 a	 form	 of	 sufficient	cause.	Was	 the
defendant’s	action	sufficient	to	bring	about,	with	high	enough	probability,	the
event	that	actually	caused	the	death?

While	 the	 meaning	 of	 proximate	 cause	 is	 very	 vague,	 the	 meaning	 of
sufficient	cause	is	quite	precise.	Using	counterfactual	notation,	we	can	define
the	probability	of	sufficiency,	or	PS,	to	be	P(YX	=	1	=	1	|	X	=	0,	Y	=	0).	This
tells	us	to	imagine	a	situation	where	X	=	0	and	Y	=	0:	the	shooter	did	not	fire
at	 the	 victim,	 and	 the	 victim	 did	 not	 run	 under	 a	 piano.	 Then	we	 ask	 how
likely	 it	 is	 that	 in	 such	 a	 situation,	 firing	 the	 shot	 (X	 =	 1)	 would	 result	 in
outcome	 Y	 =	 1	 (running	 under	 a	 piano)?	 This	 calls	 for	 counterfactual
judgment,	but	I	think	that	most	of	us	would	agree	that	the	likelihood	of	such
an	 outcome	would	 be	 extremely	 small.	Both	 intuition	 and	 the	Model	 Penal
Code	suggest	that	if	PS	 is	too	small,	we	should	not	convict	the	defendant	of
causing	Y	=	1.

Because	 the	 distinction	 between	 necessary	 and	 sufficient	 causes	 is	 so
important,	 I	 think	 it	 may	 help	 to	 anchor	 these	 two	 concepts	 in	 simple
examples.	 Sufficient	 cause	 is	 the	 more	 common	 of	 the	 two,	 and	 we	 have
already	 encountered	 this	 concept	 in	 the	 firing	 squad	 example	 of	Chapter	 1.
There,	 the	 firing	 of	 either	 Soldier	A	 or	 Soldier	B	 is	 sufficient	 to	 cause	 the
prisoner’s	death,	and	neither	(in	itself)	is	necessary.	So	PS	=	1	and	PN	=	0.

Things	get	a	bit	more	interesting	when	uncertainty	strikes—for	example,	if
each	soldier	has	some	probability	of	disobeying	orders	or	missing	the	target.
For	example,	if	Soldier	A	has	a	probability	pA	of	missing	the	target,	then	his
PS	 would	 be	 1–pA,	 since	 this	 is	 his	 probability	 of	 hitting	 the	 target	 and
causing	death.	His	PN,	however,	would	depend	on	how	likely	Soldier	B	is	to
refrain	 from	 shooting	 or	 to	miss	 the	 target.	Only	 under	 such	 circumstances



would	the	shooting	of	Soldier	A	be	necessary;	 that	 is,	 the	prisoner	would	be
alive	had	Soldier	A	not	shot.

A	classic	 example	demonstrating	necessary	 causation	 tells	 the	 story	of	 a
fire	 that	broke	out	after	 someone	struck	a	match,	and	 the	question	 is	“What
caused	 the	 fire,	 striking	 the	match	or	 the	presence	of	oxygen	 in	 the	 room?”
Note	 that	 both	 factors	 are	 equally	 necessary,	 since	 the	 fire	would	 not	 have
occurred	absent	one	of	them.	So,	from	a	purely	logical	point	of	view,	the	two
factors	are	equally	responsible	for	the	fire.	Why,	then,	do	we	consider	lighting
the	 match	 a	 more	 reasonable	 explanation	 of	 the	 fire	 than	 the	 presence	 of
oxygen?

To	answer	this,	consider	the	two	sentences:

1.	 The	 house	 would	 still	 be	 standing	 if	 only	 the	match	 had	 not
been	struck.

2.	The	house	would	 still	 be	 standing	 if	 only	 the	oxygen	had	not
been	present.

Both	sentences	are	true.	Yet	the	overwhelming	majority	of	readers,	I’m	sure,
would	 come	 up	with	 the	 first	 scenario	 if	 asked	 to	 explain	what	 caused	 the
house	 to	 burn	 down,	 the	 match	 or	 the	 oxygen.	 So,	 what	 accounts	 for	 the
difference?

The	answer	clearly	has	something	to	do	with	normality:	having	oxygen	in
the	house	is	quite	normal,	but	we	can	hardly	say	that	about	striking	a	match.
The	difference	does	not	show	up	in	the	logic,	but	it	does	show	up	in	the	two
measures	we	discussed	above,	PS	and	PN.

If	we	 take	 into	 account	 that	 the	 probability	 of	 striking	 a	match	 is	much
lower	than	that	of	having	oxygen,	we	find	quantitatively	that	for	Match,	both
PN	and	PS	are	high,	while	for	Oxygen,	PN	is	high	but	PS	is	low.	Is	this	why,
intuitively,	 we	 blame	 the	match	 and	 not	 the	 oxygen?	Quite	 possibly,	 but	 it
may	be	only	part	of	the	answer.

In	1982,	psychologists	Daniel	Kahneman	and	Amos	Tversky	investigated
how	people	choose	an	“if	only”	culprit	to	“undo”	an	undesired	outcome	and
found	consistent	patterns	in	their	choices.	One	was	that	people	are	more	likely
to	imagine	undoing	a	rare	event	than	a	common	one.	For	example,	if	we	are
undoing	a	missed	appointment,	we	are	more	 likely	 to	 say,	“If	only	 the	 train
had	left	on	schedule,”	than	“If	only	the	train	had	left	early.”	Another	pattern
was	 people’s	 tendency	 to	 blame	 their	 own	 actions	 (e.g.,	 striking	 a	 match)
rather	than	events	not	under	their	control.	Our	ability	to	estimate	PN	and	PS



from	 our	 model	 of	 the	 world	 suggests	 a	 systematic	 way	 of	 accounting	 for
these	 considerations	 and	 eventually	 teaching	 robots	 to	 produce	 meaningful
explanations	of	peculiar	events.

We	have	seen	that	PN	captures	the	rationale	behind	the	“but-for”	criterion
in	a	legal	setting.	But	should	PS	enter	legal	considerations	in	criminal	and	tort
law?	I	believe	that	it	should,	because	attention	to	sufficiency	implies	attention
to	 the	consequences	of	one’s	action.	The	person	who	 lit	 the	match	ought	 to
have	 anticipated	 the	 presence	 of	 oxygen,	 whereas	 nobody	 is	 generally
expected	to	pump	all	the	oxygen	out	of	the	house	in	anticipation	of	a	match-
striking	ceremony.

What	weight,	then,	should	the	law	assign	to	the	necessary	versus	sufficient
components	 of	 causation?	Philosophers	 of	 law	have	 not	 discussed	 the	 legal
status	of	 this	question,	perhaps	because	 the	notions	of	PS	 and	PN	were	not
formalized	with	such	precision.	However,	from	an	AI	perspective,	clearly	PN
and	 PS	 should	 take	 part	 in	 generating	 explanations.	 A	 robot	 instructed	 to
explain	why	a	fire	broke	out	has	no	choice	but	to	consider	both.	Focusing	on
PN	 only	 would	 yield	 the	 untenable	 conclusion	 that	 striking	 a	 match	 and
having	 oxygen	 are	 equally	 adequate	 explanations	 for	 the	 fire.	 A	 robot	 that
issues	this	sort	of	explanation	will	quickly	lose	its	owner’s	trust.

NECESSARY	CAUSES,	SUFFICIENT	CAUSES,	AND
CLIMATE	CHANGE

In	August	2003,	 the	most	 intense	heat	wave	in	five	centuries	struck	western
Europe,	 concentrating	 its	 most	 severe	 effects	 on	 France.	 The	 French
government	 blamed	 the	 heat	wave	 for	 nearly	 15,000	 deaths,	many	 of	 them
among	 elderly	 people	 who	 lived	 by	 themselves	 and	 did	 not	 have	 air-
conditioning.	Were	they	victims	of	global	warming	or	of	bad	luck—of	living
in	the	wrong	place	at	the	wrong	time?

Before	2003,	climate	scientists	had	avoided	speculating	on	such	questions.
The	conventional	wisdom	was	something	like	this:	“Although	this	is	the	kind
of	 phenomenon	 that	 global	 warming	 might	 make	 more	 frequent,	 it	 is
impossible	 to	 attribute	 this	 particular	 event	 to	 past	 emissions	of	 greenhouse
gases.”

Myles	 Allen,	 a	 physicist	 at	 the	 University	 of	 Oxford	 and	 author	 of	 the
above	 quote,	 suggested	 a	 way	 to	 do	 better:	 use	 a	 metric	 called	 fraction	 of
attributable	 risk	 (FAR)	 to	 quantify	 the	 effect	 of	 climate	 change.	 The	 FAR



requires	us	to	know	two	numbers:	p0,	the	probability	of	a	heat	wave	like	the
2003	 heat	 wave	 before	 climate	 change	 (e.g.,	 before	 1800),	 and	 p1,	 the
probability	after	climate	change.	For	example,	if	the	probability	doubles,	then
we	can	say	that	half	of	the	risk	is	due	to	climate	change.	If	it	triples,	then	two-
thirds	of	the	risk	is	due	to	climate	change.

Because	the	FAR	is	defined	purely	from	data,	it	does	not	necessarily	have
any	 causal	 meaning.	 It	 turns	 out,	 however,	 that	 under	 two	 mild	 causal
assumptions,	 it	 is	 identical	 to	 the	probability	 of	 necessity.	First,	we	need	 to
assume	 that	 the	 treatment	 (greenhouse	gases)	and	outcome	(heat	waves)	are
not	confounded:	there	is	no	common	cause	of	each.	This	is	very	reasonable,
because	as	far	as	we	know,	the	only	cause	of	the	increase	in	greenhouse	gases
is	 ourselves.	 Second,	 we	 need	 to	 assume	 monotonicity.	 We	 discussed	 this
assumption	 briefly	 in	 the	 last	 chapter;	 in	 this	 context,	 it	 means	 that	 the
treatment	 never	 has	 the	 opposite	 effect	 from	 what	 we	 expect:	 that	 is,
greenhouse	gases	can	never	protect	us	from	a	heat	wave.

Provided	 the	assumptions	of	no	confounding	and	no	protection	hold,	 the
rung-one	metric	of	FAR	is	promoted	to	rung	three,	where	it	becomes	PN.	But
Allen	did	not	know	the	causal	 interpretation	of	 the	FAR—it	 is	probably	not
common	 knowledge	 among	meteorologists—and	 this	 forced	 him	 to	 present
his	results	using	somewhat	tortuous	language.

But	what	data	can	we	use	to	estimate	the	FAR	(or	PN)?	We	have	observed
only	one	such	heat	wave.	We	can’t	do	a	controlled	experiment,	because	that
would	require	us	to	control	the	level	of	carbon	dioxide	as	if	we	were	flicking
a	 switch.	 Fortunately,	 climate	 scientists	 have	 a	 secret	 weapon:	 they	 can
conduct	an	in	silico	experiment—a	computer	simulation.

Allen	and	Peter	Stott	of	the	Met	Office	(the	British	weather	service)	took
up	 the	 challenge,	 and	 in	 2004	 they	 became	 the	 first	 climate	 scientists	 to
commit	 themselves	 to	a	causal	statement	about	an	 individual	weather	event.
Or	did	they?	Judge	for	yourself.	This	is	what	they	wrote:	“It	is	very	likely	that
over	 half	 the	 risk	 of	 European	 summer	 temperature	 anomalies	 exceeding	 a
threshold	of	1.6°	C.	is	attributable	to	human	influence.”

Although	 I	 commend	 Allen	 and	 Stott’s	 bravery,	 it	 is	 a	 pity	 that	 their
important	finding	was	buried	in	such	a	thicket	of	impenetrable	language.	Let
me	unpack	this	statement	and	then	try	to	explain	why	they	had	to	express	it	in
such	a	convoluted	way.	First,	“temperature	anomaly	exceeding	a	threshold	of
1.6°	C.”	was	 their	way	 of	 defining	 the	 outcome.	 They	 chose	 this	 threshold
because	the	average	temperature	in	Europe	that	summer	was	more	than	1.6°	C
above	 normal,	 which	 had	 never	 previously	 happened	 in	 recorded	 history.



Their	choice	balanced	the	competing	objectives	of	picking	an	outcome	that	is
sufficiently	 extreme	 to	 capture	 the	 effect	 of	 global	 warming	 but	 not	 too
closely	 tailored	 to	 the	 specifics	 of	 the	 2003	 event.	 Instead	 of	 using,	 for
example,	 the	 average	 temperature	 in	 France	 during	August,	 they	 chose	 the
broader	 criterion	 of	 the	 average	 temperature	 in	 Europe	 over	 the	 entire
summer.

Next,	 what	 did	 they	 mean	 by	 “very	 likely”	 and	 “half	 the	 risk”?	 In
mathematical	terms,	Allen	and	Stott	meant	that	there	was	a	90	percent	chance
that	 the	 FAR	 was	 over	 50	 percent.	 Or,	 equivalently,	 there	 is	 a	 90	 percent
chance	 that	 summers	 like	 2003	 are	 more	 than	 twice	 as	 likely	 with	 current
levels	 of	 carbon	 dioxide	 as	 they	would	 be	with	 preindustrial	 levels.	Notice
that	there	are	two	layers	of	probability	here:	we	are	talking	about	a	probability
of	a	probability!	No	wonder	our	mind	boggles	and	our	eyes	swim	when	we
read	 such	 a	 statement.	 The	 reason	 for	 the	 double	whammy	 is	 that	 the	 heat
wave	is	subject	to	two	kinds	of	uncertainty.	First,	there	is	uncertainty	over	the
amount	of	long-term	climate	change.	This	is	the	uncertainty	that	goes	into	the
first	 90	 percent	 figure.	 Even	 if	 we	 know	 the	 amount	 of	 long-term	 climate
change	exactly,	there	is	uncertainty	about	the	weather	in	any	given	year.	That
is	the	kind	of	variability	that	is	built	into	the	50	percent	fraction	of	attributable
risk.

So	we	 have	 to	 grant	 that	Allen	 and	 Stott	were	 trying	 to	 communicate	 a
complicated	 idea.	Nevertheless,	 one	 thing	 is	missing	 from	 their	 conclusion:
causality.	 Their	 statement	 does	 not	 contain	 even	 a	 hint	 of	 causation—or
maybe	 just	 a	 hint,	 in	 the	 ambiguous	 and	 inscrutable	 phrase	 “attributable	 to
human	influence.”

Now	 compare	 this	 with	 a	 causal	 version	 of	 the	 same	 conclusion:	 “CO2
emissions	 are	 very	 likely	 to	 have	 been	 a	 necessary	 cause	 of	 the	 2003	 heat
wave.”	Which	 sentence,	 theirs	 or	 ours,	 will	 you	 still	 remember	 tomorrow?
Which	one	could	you	explain	to	your	next-door	neighbor?

I	 am	 not	 personally	 an	 expert	 on	 climate	 change,	 so	 I	 got	 this	 example
from	 one	 of	 my	 collaborators,	 Alexis	 Hannart	 of	 the	 Franco-Argentine
Institute	on	 the	Study	of	Climate	and	 Its	 Impacts	 in	Buenos	Aires,	who	has
been	a	big	proponent	of	causal	analysis	in	climate	science.	Hannart	draws	the
causal	graph	in	Figure	8.4.	Because	Greenhouse	Gases	is	a	top-level	node	in
the	 climate	model,	with	 no	 arrows	 going	 into	 it,	 he	 argues	 that	 there	 is	 no
confounding	between	it	and	Climate	Response.	Likewise,	he	vouches	for	the
no-protection	assumption	(i.e.,	greenhouse	gases	cannot	protect	us	from	heat
waves).



Hannart	 goes	 beyond	Allen	 and	Stott	 and	uses	 our	 formulas	 to	 compute
the	probability	of	 sufficiency	 (PS)	 and	of	necessity	 (PN).	 In	 the	 case	of	 the
2003	European	heat	wave,	he	finds	that	PS	was	extremely	low,	about	0.0072,
meaning	that	there	was	no	way	to	predict	that	this	event	would	happen	in	this
particular	year.	On	the	other	hand,	the	probability	of	necessity	PN	was	0.9,	in
agreement	with	Allen	 and	Stott’s	 results.	This	means	 that	 it	 is	 highly	 likely
that,	without	greenhouse	gases,	the	heat	wave	would	not	have	happened.

The	 apparently	 low	 value	 of	PS	 has	 to	 be	 put	 into	 a	 larger	 context.	We
don’t	 just	want	 to	know	 the	probability	of	 a	heat	wave	 this	year;	we	would
like	to	know	the	probability	of	a	recurrence	of	such	a	severe	heat	wave	over	a
longer	 time	 frame—say	 in	 the	 next	 ten	 or	 fifty	 years.	 As	 the	 time	 frame
lengthens,	PN	decreases	because	other	possible	mechanisms	for	a	heat	wave
might	 come	 into	 play.	 On	 the	 other	 hand,	PS	 increases	 because	 we	 are	 in
effect	giving	the	dice	more	chances	to	come	up	snake	eyes.	So,	for	example,
Hannart	computes	that	there	is	an	80	percent	probability	that	climate	change
will	be	a	sufficient	cause	of	another	European	heat	wave	like	the	2003	one	(or
worse)	in	a	two-hundred-year	period.	That	might	not	sound	too	terrifying,	but
that’s	assuming	the	greenhouse	gas	levels	of	today.	In	reality,	CO2	levels	are
certain	to	continue	rising,	which	can	only	increase	PS	and	shorten	the	window
of	time	until	the	next	heat	wave.

FIGURE	8.4.	Causal	diagram	for	the	climate	change	example.

Can	ordinary	people	learn	to	understand	the	difference	between	necessary
and	sufficient	causes?	This	is	a	nontrivial	question.	Even	scientists	sometimes
struggle.	In	fact,	two	conflicting	studies	came	out	that	analyzed	the	2010	heat
wave	 in	 Russia,	 when	 Russia	 had	 its	 hottest	 summer	 ever	 and	 peat	 fires
darkened	 the	skies	of	Moscow.	One	group	concluded	 that	natural	variability
caused	the	heat	wave;	another	concluded	that	climate	change	caused	it.	In	all
likelihood,	 the	 disagreement	 occurred	 because	 the	 two	 groups	 defined	 their
outcome	differently.	One	group	apparently	based	its	argument	on	PN	and	got
a	high	likelihood	that	climate	change	was	the	cause,	while	the	other	used	PS
and	 got	 a	 low	 likelihood.	 The	 second	 group	 attributed	 the	 heat	 wave	 to	 a
persistent	high-pressure	or	“blocking	pattern”	over	Russia—which	sounds	to
me	like	a	sufficient	cause—and	found	that	greenhouse	gases	had	 little	 to	do



with	 this	phenomenon.	But	any	study	 that	uses	PS	 as	a	metric,	over	a	 short
period,	is	setting	a	high	bar	for	proving	causation.

Before	 leaving	 this	 example,	 I	 would	 like	 to	 comment	 again	 on	 the
computer	 models.	 Most	 other	 scientists	 have	 to	 work	 very	 hard	 to	 get
counterfactual	 information,	 for	 example	 by	 painfully	 combining	 data	 from
observational	 and	 experimental	 studies.	 Climate	 scientists	 can	 get
counterfactuals	very	easily	 from	 their	 computer	models:	 just	 enter	 in	 a	new
number	 for	 the	 carbon	 dioxide	 concentration	 and	 let	 the	 program	 run.
“Easily”	 is,	 of	 course,	 relative.	Behind	 the	 simple	 causal	 diagram	of	Figure
8.4	lies	a	fabulously	complex	response	function,	given	by	the	millions	of	lines
of	computer	code	that	go	into	a	climate	simulation.

This	brings	up	a	natural	question:	How	much	can	we	 trust	 the	computer
simulations?	The	 question	 has	 political	 ramifications,	 especially	 here	 in	 the
United	 States.	 However,	 I	 will	 try	 to	 give	 an	 apolitical	 answer.	 I	 would
consider	 the	response	function	 in	 this	example	much	more	credible	 than	 the
linear	 models	 that	 one	 sees	 so	 often	 in	 natural	 and	 social	 sciences.	 Linear
models	 are	 often	 chosen	 for	 no	 good	 reason	 other	 than	 convenience.	 By
comparison,	 the	 climate	 models	 reflect	 more	 than	 a	 century	 of	 study	 by
physicists,	 meteorologists,	 and	 climate	 scientists.	 They	 represent	 the	 best
efforts	of	a	community	of	scientists	 to	understand	 the	processes	 that	govern
our	 weather	 and	 climate.	 By	 any	 normal	 scientific	 standards,	 the	 climate
models	are	strong	and	compelling	evidence,	but	with	one	caveat.	Though	they
are	 excellent	 at	 forecasting	 the	weather	 a	 few	 days	 ahead,	 they	 have	 never
been	verified	in	a	prospective	trial	over	century-long	timescales,	so	they	could
still	contain	systematic	errors	that	we	don’t	know	about.

A	WORLD	OF	COUNTERFACTUALS

I	hope	 that	by	now	it	 is	obvious	 that	counterfactuals	are	an	essential	part	of
how	humans	 learn	about	 the	world	and	how	our	actions	affect	 it.	While	we
can	never	walk	down	both	the	paths	that	diverge	in	a	wood,	in	a	great	many
cases	we	can	know,	with	some	degree	of	confidence,	what	lies	down	each.

Beyond	doubt,	the	variety	and	richness	of	causal	queries	that	we	can	pose
to	 our	 “inference	 engine”	 are	 greatly	 enhanced	 when	 we	 can	 include
counterfactuals	in	the	mix.	Another	very	popular	kind	of	query,	which	I	have
not	discussed	here,	called	the	effect	of	treatment	on	the	treated	(ETT),	is	used
to	 evaluate	 whether	 people	 who	 gain	 access	 to	 a	 treatment	 are	 those	 who
would	 benefit	most	 from	 it.	 This	measure	 is	 in	many	 cases	 superior	 to	 the



conventional	measure	of	a	treatment’s	effectiveness,	the	average	causal	effect
(ACE).	 The	 ACE,	 which	 you	 can	 get	 from	 a	 randomized	 controlled	 trial,
averages	treatment	efficacy	over	the	entire	population.	But	what	if,	 in	actual
implementation,	 those	 recruited	 for	 a	 treatment	 program	 are	 the	 ones	 least
likely	 to	benefit	 from	it?	To	assess	 the	overall	effectiveness	of	 the	program,
ETT	measures	how	adversely	treated	patients	would	be	affected	had	they	not
been	 treated—a	 counterfactual	 measure	 of	 critical	 significance	 in	 practical
decision	making.	My	former	student	Ilya	Shpitser	(now	at	Johns	Hopkins)	has
now	done	for	ETT	what	 the	do-calculus	did	for	ACE—provided	a	complete
understanding	of	when	it	is	estimable	from	data,	given	a	causal	diagram.

Undoubtedly	 the	 most	 popular	 application	 of	 counterfactuals	 in	 science
today	is	called	mediation	analysis.	For	that	reason,	I	devote	a	separate	chapter
to	it	(Chapter	9).	Oddly,	many	people,	especially	if	using	classical	mediation
analysis	 techniques,	 may	 not	 realize	 that	 they	 are	 talking	 about	 a
counterfactual	effect.

In	 a	 scientific	 context,	 a	 mediator,	 or	 mediating	 variable,	 is	 one	 that
transmits	 the	 effect	 of	 the	 treatment	 to	 the	 outcome.	 We	 have	 seen	 many
mediation	examples	in	this	book,	such	as	Smoking	 	Tar	 	Cancer	 (where
Tar	 is	 the	mediator).	The	main	question	of	 interest	 in	 such	cases	 is	whether
the	mediating	variable	accounts	for	the	entire	effect	of	the	treatment	variable
or	 some	part	 of	 the	 effect	 does	 not	 require	 a	mediator.	We	would	 represent
such	an	effect	by	a	separate	arrow	leading	directly	from	the	treatment	to	the
outcome,	such	as	Smoking	 	Cancer.

Mediation	 analysis	 aims	 to	 disentangle	 the	 direct	 effect	 (which	 does	 not
pass	 through	 the	 mediator)	 from	 the	 indirect	 effect	 (the	 part	 that	 passes
through	the	mediator).	The	importance	is	easy	to	see.	If	smoking	causes	lung
cancer	only	through	the	formation	of	tar	deposits,	then	we	could	eliminate	the
excess	cancer	risk	by	giving	smokers	tar-free	cigarettes,	such	as	e-cigarettes.
On	 the	other	 hand,	 if	 smoking	 causes	 cancer	 directly	 or	 through	 a	 different
mediator,	 then	 e-cigarettes	 might	 not	 solve	 the	 problem.	 At	 present	 this
medical	question	is	unresolved.

At	 this	 point	 it	 is	 probably	 not	 obvious	 to	 you	 that	 direct	 and	 indirect
effects	involve	counterfactual	statements.	It	was	definitely	not	obvious	to	me!
In	fact,	it	was	one	of	the	biggest	surprises	of	my	career.	The	next	chapter	tells
this	story	and	gives	many	real-life	applications	of	mediation	analysis.





In	1912,	a	cairn	of	snow	and	a	cross	of	skis	mark	the	final	resting	place	of	Captain
Robert	Falcon	Scott	(right)	and	the	last	two	men	from	his	ill-fated	expedition	to	the
South	Pole.	Among	numerous	hardships,	Scott’s	men	suffered	from	scurvy.	This
part	of	the	tragedy	could	have	been	averted	if	scientists	had	understood	the

mechanism	by	which	citrus	fruits	prevent	the	disease.	(Source:	left,	photograph	by
Tryggve	Gran	(presumed);	right,	photograph	by	Herbert	Ponting.	Courtesy	of



Canterbury	Museum,	New	Zealand.)
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MEDIATION:	THE	SEARCH	FOR	A
MECHANISM

For	want	of	a	nail	the	shoe	was	lost.

For	want	of	a	shoe	the	horse	was	lost.…

For	want	of	a	battle	the	kingdom	was	lost.

And	all	for	the	want	of	a	nail.

—ANONYMOUS

IN	 ordinary	 language,	 the	 question	 “Why?”	 has	 at	 least	 two	 versions.	 The
first	 is	 straightforward:	you	 see	 an	effect,	 and	you	want	 to	know	 the	 cause.
Your	grandfather	is	lying	in	the	hospital,	and	you	ask,	“Why?	How	could	he
have	had	a	heart	attack	when	he	seemed	so	healthy?”

But	there	is	a	second	version	of	the	“Why?”	question,	which	we	ask	when
we	want	 to	 better	 understand	 the	 connection	 between	 a	 known	 cause	 and	 a
known	effect.	For	instance,	we	observe	that	Drug	B	prevents	heart	attacks.	Or,
like	 James	 Lind,	 we	 observe	 that	 citrus	 fruits	 prevent	 scurvy.	 The	 human
mind	is	restless	and	always	wants	to	know	more.	Before	long	we	start	asking
the	second	version	of	the	question:	“Why?	What	is	the	mechanism	by	which
citrus	fruits	prevent	scurvy?”	This	chapter	focuses	on	this	second	version	of
“why.”

The	 search	 for	mechanisms	 is	 critical	 to	 science,	 as	well	 as	 to	 everyday
life,	 because	 different	 mechanisms	 call	 for	 different	 actions	 when



circumstances	 change.	 Suppose	 we	 run	 out	 of	 oranges.	 Knowing	 the
mechanism	by	which	oranges	work,	we	can	 still	prevent	 scurvy.	We	simply
need	 another	 source	 of	 vitamin	 C.	 If	 we	 didn’t	 know	 the	 mechanism,	 we
might	be	tempted	to	try	bananas.

The	word	 that	 scientists	 use	 for	 the	 second	 type	 of	 “Why?”	 question	 is
“mediation.”	You	might	read	in	a	journal	a	statement	like	this:	“The	effect	of
Drug	B	 on	 heart	 attacks	 is	mediated	 by	 its	 effect	 on	 blood	 pressure.”	 This
statement	encodes	a	simple	causal	model:	Drug	A	 	Blood	Pressure	 	Heart
Attack.	 In	 this	 case,	 the	 drug	 reduces	 high	 blood	 pressure,	 which	 in	 turn
reduces	the	risk	of	heart	attack.	(Biologists	typically	use	a	different	symbol,	A
—|	 B,	 when	 cause	 A	 inhibits	 effect	 B,	 but	 in	 the	 causality	 literature	 it	 is
customary	to	use	A	 	B	both	for	positive	and	negative	causes.)	Likewise,	we
can	summarize	the	effect	of	citrus	fruits	on	scurvy	by	the	causal	model	Citrus
Fruits	 	Vitamin	C	 	Scurvy.

We	want	to	ask	certain	typical	questions	about	a	mediator:	Does	it	account
for	the	entire	effect?	Does	Drug	B	work	exclusively	through	blood	pressure	or
perhaps	through	other	mechanisms	as	well?	The	placebo	effect	is	a	common
type	of	mediator	in	medicine:	if	a	drug	acts	only	through	the	patient’s	belief	in
its	 benefit,	 most	 doctors	 will	 consider	 it	 ineffective.	 Mediation	 is	 also	 an
important	 concept	 in	 the	 law.	 If	 we	 ask	 whether	 a	 company	 discriminated
against	women	when	it	paid	 them	lower	salaries,	we	are	asking	a	mediation
question.	 The	 answer	 depends	 on	 whether	 the	 observed	 salary	 disparity	 is
produced	 directly	 in	 response	 to	 the	 applicant’s	 sex	 or	 indirectly,	 through	 a
mediator	such	as	qualification,	over	which	the	employer	has	no	control.

All	 the	 above	 questions	 require	 a	 sensitive	 ability	 to	 tease	 apart	 total
effects,	 direct	 effects	 (which	 do	 not	 pass	 through	 a	 mediator),	 and	 indirect
effects	(which	do).	Even	defining	these	terms	has	been	a	major	challenge	for
scientists	 over	 the	 past	 century.	 Inhibited	 by	 the	 taboos	 against	 uttering	 the
word	 “causation,”	 some	 tried	 to	 define	 mediation	 using	 a	 causality-free
vocabulary.	Others	dismissed	mediation	analysis	altogether	and	declared	 the
concepts	of	direct	and	indirect	effects	as	“more	deceptive	than	helpful	to	clear
statistical	thinking.”

For	 me,	 too,	 mediation	 was	 a	 struggle—ultimately	 one	 of	 the	 most
rewarding	of	my	career,	because	I	was	wrong	at	 first,	and	as	 I	was	 learning
from	my	mistake,	I	came	up	with	an	unexpected	solution.	For	a	while,	I	was
of	the	opinion	that	indirect	effects	have	no	operational	implications	because,
unlike	direct	effects,	they	cannot	be	defined	in	the	language	of	interventions.
It	was	 a	 personal	 breakthrough	when	 I	 realized	 that	 they	 can	 be	 defined	 in



terms	 of	 counterfactuals	 and	 that	 they	 can	 also	 have	 important	 policy
implications.	They	can	be	quantified	only	after	we	have	reached	the	third	rung
of	the	Ladder	of	Causation,	and	that	is	why	I	have	placed	them	at	the	end	of
this	 book.	 Mediation	 has	 flourished	 in	 its	 new	 habitat	 and	 enabled	 us	 to
quantify,	often	from	the	bare	data,	 the	portion	of	 the	effect	mediated	by	any
desired	path.

Understandably,	 due	 to	 their	 counterfactual	 dressing,	 indirect	 effects
remain	 somewhat	 enigmatic	 even	 among	 champions	 of	 the	 Causal
Revolution.	 I	 believe	 that	 their	 overwhelming	 usefulness,	 however,	 will
eventually	 overcome	 any	 lingering	 doubts	 over	 the	 metaphysics	 of
counterfactuals.	Perhaps	they	could	be	compared	to	irrational	and	imaginary
numbers:	 they	 made	 people	 uncomfortable	 at	 first	 (hence	 the	 name
“irrational”),	 but	 eventually	 their	 usefulness	 transformed	 discomfort	 into
delight.

To	illustrate	this	point,	I	will	give	several	examples	of	how	researchers	in
various	disciplines	have	gleaned	useful	insights	from	mediation	analysis.	One
researcher	studied	an	education	reform	called	“Algebra	for	All,”	which	at	first
seemed	a	failure	but	later	turned	into	a	success.	A	study	of	tourniquet	use	in
the	Iraq	and	Afghanistan	wars	failed	to	show	that	it	had	any	benefit;	careful
mediation	 analysis	 explains	 why	 the	 benefit	 may	 have	 been	masked	 in	 the
study.

In	 summary,	 over	 the	 last	 fifteen	 years,	 the	 Causal	 Revolution	 has
uncovered	clear	and	simple	rules	for	quantifying	how	much	of	a	given	effect
is	direct	and	how	much	is	indirect.	It	has	transformed	mediation	from	a	poorly
understood	 concept	 with	 doubtful	 legitimacy	 into	 a	 popular	 and	 widely
applicable	tool	for	scientific	analysis.

SCURVY:	THE	WRONG	MEDIATOR

I	would	like	to	begin	with	a	truly	appalling	historical	example	that	highlights
the	importance	of	understanding	the	mediator.

One	of	 the	 earliest	 examples	of	 a	 controlled	 experiment	was	 sea	 captain
James	Lind’s	study	of	scurvy,	published	in	1747.	In	Lind’s	time	scurvy	was	a
terrifying	disease,	estimated	to	have	killed	2	million	sailors	between	1500	and
1800.	Lind	established,	as	conclusively	as	anybody	could	at	that	time,	that	a
diet	 of	 citrus	 fruit	 prevented	 sailors	 from	developing	 this	 dread	disease.	By
the	early	1800s,	scurvy	had	become	a	problem	of	the	past	for	the	British	navy,



as	all	its	ships	took	to	the	seas	with	an	adequate	supply	of	citrus	fruit.	This	is
usually	 the	 point	 at	 which	 history	 books	 end	 the	 story,	 celebrating	 a	 great
triumph	of	the	scientific	method.

It	 seems	 very	 surprising,	 then,	 that	 this	 completely	 preventable	 disease
made	 an	 unexpected	 comeback	 a	 century	 later,	 when	 British	 expeditions
started	 to	 explore	 the	 polar	 regions.	The	British	Arctic	Expedition	 of	 1875,
the	Jackson-Harmsworth	Expedition	to	the	Arctic	in	1894,	and	most	notably
the	two	expeditions	of	Robert	Falcon	Scott	to	Antarctica	in	1903	and	1911	all
suffered	greatly	from	scurvy.

How	could	this	have	happened?	In	two	words:	ignorance	and	arrogance—
always	a	potent	combination.	By	1900	the	 leading	physicians	 in	Britain	had
forgotten	 the	 lessons	 of	 a	 century	 before.	 Scott’s	 physician	 on	 the	 1903
expedition,	Dr.	Reginald	Koettlitz,	attributed	scurvy	to	tainted	meat.	Further,
he	 added,	 “the	 benefit	 of	 the	 so-called	 ‘antiscorbutics’	 [i.e.,	 scurvy
preventatives,	such	as	lime	juice]	is	a	delusion.”	In	his	1911	expedition,	Scott
stocked	 dried	meat	 that	 had	 been	 scrupulously	 inspected	 for	 signs	 of	 decay
but	 no	 citrus	 fruits	 or	 juices	 (see	 Figure	 9.1).	 The	 trust	 he	 placed	 in	 the
doctor’s	opinion	may	have	contributed	to	the	tragedy	that	followed.	All	of	the
five	men	who	made	 it	 to	 the	South	Pole	died,	 two	of	an	unspecified	 illness
that	was	most	 likely	 scurvy.	One	 team	member	 turned	back	before	 the	pole
and	made	it	back	alive,	but	with	a	severe	case	of	scurvy.

With	 hindsight,	Koettlitz’s	 advice	 borders	 on	 criminal	malpractice.	How
could	the	lesson	of	James	Lind	have	been	so	thoroughly	forgotten—or	worse,
dismissed—a	century	 later?	The	explanation,	 in	part,	 is	 that	doctors	did	not
really	 understand	 how	 citrus	 fruits	 worked	 against	 scurvy.	 In	 other	 words,
they	did	not	know	the	mediator.



FIGURE	9.1.	Daily	rations	for	the	men	on	Scott’s	trek	to	the	pole:	chocolate,

pemmican	(a	preserved	meat	dish),	sugar,	biscuits,	butter,	tea.	Conspicuously
absent:	any	fruit	containing	vitamin	C.	(Source:	Photograph	by	Herbert	Ponting,

courtesy	of	Canterbury	Museum,	New	Zealand.)

From	Lind’s	day	onward,	it	had	always	been	believed	(but	never	proved)
that	citrus	fruits	prevented	scurvy	as	a	result	of	their	acidity.	In	other	words,
doctors	 understood	 the	 process	 to	 be	 governed	 by	 the	 following	 causal
diagram:

Citrus	Fruits	 	Acidity	 	Scurvy

From	 this	 point	 of	 view,	 any	 acid	 would	 do.	 Even	 Coca-Cola	 would	 work
(although	it	had	not	yet	been	invented).	At	first	sailors	used	Spanish	lemons;
then,	for	economic	reasons,	they	substituted	West	Indian	limes,	which	were	as
acidic	as	the	Spanish	lemons	but	contained	only	a	quarter	of	the	vitamin	C.	To
make	 things	 worse,	 they	 started	 “purifying”	 the	 lime	 juice	 by	 cooking	 it,
which	may	have	broken	down	whatever	vitamin	C	it	still	contained.	In	other
words,	they	were	disabling	the	mediator.

When	the	sailors	on	the	1875	Arctic	expedition	fell	ill	with	scurvy	despite
taking	 lime	 juice,	 the	medical	 community	was	 thrown	 into	 utter	 confusion.
Those	 sailors	 who	 had	 eaten	 freshly	 killed	 meat	 did	 not	 get	 scurvy,	 while
those	who	had	eaten	tinned	meat	did.	Koettlitz	and	others	blamed	improperly
preserved	 meat	 as	 the	 culprit.	 Sir	 Almroth	Wright	 concocted	 a	 theory	 that



bacteria	in	the	(supposedly)	tainted	meat	caused	“ptomaine	poisoning,”	which
then	 led	 to	 scurvy.	 Meanwhile	 the	 theory	 that	 citrus	 fruits	 could	 prevent
scurvy	was	consigned	to	the	dustbin.

The	 situation	 was	 not	 straightened	 out	 until	 the	 true	 mediator	 was
discovered.	 In	1912,	a	Polish	biochemist	named	Casimir	Funk	proposed	 the
existence	of	micronutrients	that	he	called	“vitamines”	(the	e	was	intentional).
By	 1930	 Albert	 Szent-Gyorgyi	 had	 isolated	 the	 particular	 nutrient	 that
prevented	 scurvy.	 It	 was	 not	 any	 old	 acid	 but	 one	 acid	 in	 particular,	 now
known	as	vitamin	C	or	ascorbic	acid	(a	nod	to	its	“antiscorbutic”	past).	Szent-
Gyorgyi	received	the	Nobel	Prize	for	his	discovery	in	1937.	Thanks	to	Szent-
Gyorgyi,	we	now	know	the	actual	causal	path:	Citrus	Fruits	 	Vitamin	C	
Scurvy.

I	think	that	it	is	fair	to	predict	that	scientists	will	never	“forget”	this	causal
path	again.	And	I	think	the	reader	will	agree	that	mediation	analysis	is	more
than	an	abstract	mathematical	exercise.

NATURE	VERSUS	NURTURE:	THE	TRAGEDY	OF
BARBARA	BURKS

To	 the	 best	 of	 my	 knowledge,	 the	 first	 person	 to	 explicitly	 represent	 a
mediator	 with	 a	 diagram	 was	 a	 Stanford	 graduate	 student	 named	 Barbara
Burks,	in	1926.	This	very	little-known	pioneer	in	women’s	science	is	one	of
the	 true	 heroes	 of	 this	 book.	 There	 is	 reason	 to	 believe	 that	 she	 actually
invented	 path	 diagrams	 independently	 of	 Sewall	 Wright.	 And	 in	 regard	 to
mediation,	she	was	ahead	of	Wright	and	decades	ahead	of	her	time.

Burks’s	main	research	 interest,	 throughout	her	unfortunately	brief	career,
was	the	role	of	nature	versus	nurture	in	determining	human	intelligence.	Her
advisor	at	Stanford	was	Lewis	Terman,	a	psychologist	famous	for	developing
the	Stanford-Binet	IQ	test	and	a	firm	believer	that	intelligence	was	inherited,
not	 acquired.	 Bear	 in	 mind	 that	 this	 was	 the	 heyday	 of	 the	 eugenics
movement,	now	discredited	but	at	that	time	legitimized	by	the	active	research
of	people	like	Francis	Galton,	Karl	Pearson,	and	Terman.

The	 nature-versus-nurture	 debate	 is,	 of	 course,	 a	 very	 old	 one	 that
continued	long	after	Burks.	Her	unique	contribution	was	to	boil	it	down	to	a
causal	diagram	(see	Figure	9.2),	which	she	used	to	ask	(and	answer)	the	query
“How	much	of	the	causal	effect	is	due	to	the	direct	path	Parental	Intelligence	
	 Child’s	 Intelligence	 (nature),	 and	 how	much	 is	 due	 to	 the	 indirect	 path



Parental	Intelligence	 	Social	Status	 	Child’s	Intelligence	(nurture)?”

In	 this	 diagram,	 Burks	 has	 used	 some	 double-headed	 arrows,	 either	 to
represent	mutual	causation	or	simply	out	of	uncertainty	about	the	direction	of
causation.	For	simplicity	we	are	going	to	assume	that	the	main	effect	of	both
arrows	goes	from	left	to	right,	which	makes	Social	Status	a	mediator,	so	that
the	parents’	 intelligence	elevates	 their	 social	 standing,	and	 this	 in	 turn	gives
the	child	a	better	opportunity	to	develop	his	or	her	intelligence.	The	variable
X	represents	“other	unmeasured	remote	causes.”

FIGURE	9.2.	The	nature-versus-nurture	debate,	as	framed	by	Barbara	Burks.

In	her	dissertation	Burks	collected	data	from	extensive	home	visits	to	204
families	with	foster	children,	who	would	presumably	get	only	the	benefits	of
nurture	and	none	of	the	benefits	of	nature	from	their	foster	parents	(see	Figure
9.3).	She	gave	IQ	tests	to	all	of	them	and	to	a	control	group	of	105	families
without	 foster	 children.	 In	 addition,	 she	 gave	 them	 questionnaires	 that	 she
used	to	grade	various	aspects	of	the	child’s	social	environment.	Using	her	data
and	path	analysis,	she	computed	the	direct	effect	of	parental	IQ	on	children’s
IQ	 and	 found	 that	 only	 35	 percent,	 or	 about	 one-third,	 of	 IQ	 variation	 is
inherited.	 In	 other	 words,	 parents	 with	 an	 IQ	 fifteen	 points	 above	 average
would	typically	have	children	five	points	above	average.



FIGURE	9.3.	Barbara	Burks	(right)	was	interested	in	separating	the	“nature”	and

“nurture”	components	of	intelligence.	As	a	graduate	student,	she	visited	the	homes
of	more	than	two	hundred	foster	children,	gave	them	IQ	tests,	and	collected	data	on
their	social	environment.	She	was	the	first	researcher	other	than	Sewall	Wright	to
use	path	diagrams,	and	in	some	ways	she	anticipated	Wright.	(Source:	Drawing	by

Dakota	Harr.)

As	a	disciple	of	Terman,	Burks	must	have	been	disappointed	to	see	such	a
small	effect.	(In	fact,	her	estimates	have	held	up	quite	well	over	time.)	So	she
questioned	 the	 then	 accepted	method	 of	 analysis,	 which	was	 to	 control	 for
Social	 Status.	 “The	 true	measure	 of	 contribution	 of	 a	 cause	 to	 an	 effect	 is
mutilated,”	she	wrote,	“if	we	have	rendered	constant	variables	which	may	in
part	or	in	whole	be	caused	by	either	of	the	two	factors	whose	true	relationship
is	 to	 be	 measured,	 or	 by	 still	 other	 unmeasured	 remote	 causes	 which	 also
affect	either	of	 the	 two	 isolated	 factors”	 (emphasis	 in	 the	original).	 In	other
words,	 if	 you	 are	 interested	 in	 the	 total	 effect	 of	 Parental	 Intelligence	 on
Child’s	Intelligence,	you	should	not	adjust	for	(render	constant)	any	variable
on	the	pathway	between	them.

But	Burks	didn’t	stop	there.	Her	italicized	criterion,	translated	into	modern
language,	reads	that	a	bias	will	be	introduced	if	we	condition	on	variables	that
are	 (a)	 effects	 of	 either	 Parental	 Intelligence	 or	 Child’s	 Intelligence,	 or	 (b)
effects	 of	 unmeasured	 causes	 of	 either	 Parental	 Intelligence	 or	 Child’s
Intelligence	(such	as	X	in	Figure	9.2).



These	criteria	were	far	ahead	of	their	time	and	unlike	anything	that	Sewall
Wright	had	written.	In	fact,	criterion	(b)	is	one	of	the	earliest	examples	ever	of
collider	bias.	If	we	look	at	Figure	9.2,	we	see	that	Social	Status	is	a	collider
(Parental	Intelligence	 	Social	Status	 	X).	Therefore,	controlling	for	Social
Status	opens	the	back-door	path	Parental	Intelligence	 	Social	Status	 	X	
Child’s	Intelligence.	Any	resulting	estimate	of	 the	 indirect	and	direct	effects
will	be	biased.	Because	statisticians	before	(and	after)	Burks	did	not	think	in
terms	of	arrows	and	diagrams,	 they	were	 totally	 immersed	 in	 the	myth	 that,
while	simple	correlation	has	no	causal	implications,	controlled	correlation	(or
partial	regression	coefficients,	see	p.	222)	is	a	step	in	the	direction	of	causal
explanation.

Burks	was	not	the	first	person	to	discover	the	collider	effect,	but	one	can
argue	that	she	was	the	first	to	characterize	it	generally	in	graphical	terms.	Her
criterion	(b)	applies	perfectly	to	the	examples	of	M-bias	in	Chapter	4.	Hers	is
the	 first	warning	 ever	 against	 conditioning	on	 a	 pretreatment	 factor,	 a	 habit
deemed	 safe	by	 all	 twentieth-century	 statisticians	 and	oddly	 still	 considered
safe	by	some.

Now	put	yourself	in	Barbara	Burks’s	shoes.	You’ve	just	discovered	that	all
your	colleagues	have	been	controlling	for	the	wrong	variables.	You	have	two
strikes	against	you:	you’re	only	a	student,	and	you’re	a	woman.	What	do	you
do?	Do	you	put	your	head	down,	pretend	to	accept	the	conventional	wisdom,
and	communicate	with	your	colleagues	in	their	inadequate	vocabulary?

Not	 Barbara	 Burks!	 She	 titled	 her	 first	 published	 paper	 “On	 the
Inadequacy	of	the	Partial	and	Multiple	Correlation	Technique”	and	started	it
out	 by	 saying,	 “Logical	 considerations	 lead	 to	 the	 conclusion	 that	 the
techniques	 of	 partial	 and	multiple	 correlation	 are	 fraught	with	 dangers	 that
seriously	 restrict	 their	 applicability.”	 Fighting	 words	 from	 someone	 who
doesn’t	 have	 a	 PhD	 yet!	 As	 Terman	 wrote,	 “Her	 ability	 was	 somewhat
tempered	by	her	tendency	to	rub	people	the	wrong	way.	I	think	the	trouble	lay
partly	 in	 the	 fact	 that	 she	was	more	 aggressive	 in	 standing	 up	 for	 her	 own
ideas	than	many	teachers	and	male	graduate	students	liked.”	Evidently	Burks
was	ahead	of	her	time	in	more	ways	than	one.

Burks	may	actually	have	invented	path	diagrams	independently	of	Sewall
Wright,	 who	 preceded	 her	 by	 only	 six	 years.	We	 can	 say	 for	 sure	 that	 she
didn’t	 learn	 them	 in	 any	 class.	 Figure	 9.2	 is	 the	 first	 appearance	 of	 a	 path
diagram	 outside	 Sewall	 Wright’s	 work	 and	 the	 first	 ever	 in	 the	 social	 or
behavioral	 sciences.	 True,	 she	 credits	 Wright	 at	 the	 very	 end	 of	 her	 1926
paper,	 but	 she	 does	 so	 in	 a	manner	 that	 looks	 like	 a	 last-minute	 addition.	 I



have	a	hunch	that	she	found	out	about	Wright’s	diagrams	only	after	she	had
drawn	 her	 own,	 possibly	 after	 being	 tipped	 off	 by	 Terman	 or	 an	 astute
reviewer.

It	 is	 fascinating	 to	wonder	what	Burks	might	 have	 become,	 had	 she	 not
been	a	victim	of	her	times.	After	obtaining	her	doctorate	she	never	managed
to	 get	 a	 job	 as	 a	 professor	 at	 a	 university,	 for	 which	 she	 was	 certainly
qualified.	She	had	to	make	do	with	less	secure	research	positions,	for	example
at	 the	Carnegie	 Institution.	 In	1942	she	got	engaged,	which	one	might	have
expected	 to	 mark	 an	 upturn	 in	 her	 fortunes;	 instead,	 she	 went	 into	 a	 deep
depression.	 “I	 am	 convinced	 that,	 whether	 right	 or	 not,	 she	was	 sure	 some
sinister	 change	 was	 going	 on	 in	 her	 brain,	 from	 which	 she	 could	 never
recover,”	her	mother,	Frances	Burks,	wrote	to	Terman.	“So	in	tenderest	love
to	us	all	 she	chose	 to	spare	us	 the	grief	of	sharing	with	her	 the	spectacle	of
such	a	tragic	decline.”	On	May	25,	1943,	at	age	forty,	she	jumped	to	her	death
from	the	George	Washington	Bridge	in	New	York.

But	 ideas	 have	 a	 way	 of	 surviving	 tragedies.	When	 sociologists	 Hubert
Blalock	 and	 Otis	 Duncan	 resuscitated	 path	 analysis	 in	 the	 1960s,	 Burks’s
paper	served	as	the	source	of	their	inspiration.	Duncan	explained	that	one	of
his	 mentors,	 William	 Fielding	 Ogburn,	 had	 briefly	 mentioned	 path
coefficients	 in	his	1946	lecture	on	partial	correlations.	“Ogburn	had	a	report
of	 a	 brief	 paper	 by	Wright,	 the	 one	 that	 dealt	 with	 Burks’	 material,	 and	 I
acquired	this	reprint,”	Duncan	said.

So	 there	 we	 have	 it!	 Burks’s	 1926	 paper	 got	 Wright	 interested	 in	 the
inappropriate	use	of	partial	correlations.	Wright’s	response	found	its	way	into
Ogburn’s	lecture	twenty	years	later	and	implanted	itself	into	Duncan’s	mind.
Twenty	years	after	that,	when	Duncan	read	Blalock’s	work	on	path	diagrams,
it	 called	 back	 this	 half-forgotten	 memory	 from	 his	 student	 years.	 It’s	 truly
amazing	to	see	how	this	fragile	butterfly	of	an	idea	fluttered	almost	unnoticed
through	two	generations	before	reemerging	triumphantly	into	the	light.

IN	SEARCH	OF	A	LANGUAGE	(THE	BERKELEY
ADMISSIONS	PARADOX)

Despite	Burks’s	early	work,	half	a	century	 later	statisticians	were	struggling
even	 to	express	 the	 idea	of,	 let	alone	estimate,	direct	and	 indirect	effects.	A
case	in	point	is	a	well-known	paradox,	related	to	Simpson’s	paradox	but	with
a	twist.



In	1973	Eugene	Hammel,	an	associate	dean	at	the	University	of	California,
noticed	 a	 worrisome	 trend	 in	 the	 university’s	 admission	 rates	 for	 men	 and
women.	His	data	showed	that	44	percent	of	the	men	who	applied	to	graduate
school	 at	 Berkeley	 had	 been	 accepted,	 compared	 to	 only	 35	 percent	 of	 the
women.	 Gender	 discrimination	 was	 coming	 to	 wide	 public	 attention,	 and
Hammel	didn’t	want	 to	wait	 for	 someone	 else	 to	 start	 asking	questions.	He
decided	to	investigate	the	reasons	for	the	disparity.

Graduate	 admissions	 decisions,	 at	 Berkeley	 as	 at	 other	 universities,	 are
made	by	individual	departments	rather	than	by	the	university	as	a	whole.	So	it
made	sense	to	look	at	the	admissions	data	department	by	department	to	isolate
the	 culprit.	 But	 when	 he	 did	 so,	 Hammel	 discovered	 an	 amazing	 fact.
Department	 after	 department,	 the	 admissions	 decisions	 were	 consistently
more	favorable	to	women	than	to	men.	How	could	this	be?

At	this	point	Hammel	did	something	smart:	he	called	a	statistician.	Peter
Bickel,	 when	 asked	 to	 look	 at	 the	 data,	 immediately	 recognized	 a	 form	 of
Simpson’s	paradox.	As	we	saw	 in	Chapter	6,	Simpson’s	paradox	 refers	 to	a
trend	that	seems	to	go	one	direction	in	each	layer	of	a	population	(women	are
accepted	at	a	higher	rate	in	each	department)	but	in	the	opposite	direction	for
the	whole	population	(men	are	accepted	at	a	higher	rate	in	the	university	as	a
whole).	We	also	saw	in	Chapter	6	 that	 the	correct	 resolution	of	 the	paradox
depends	 very	 much	 on	 the	 question	 you	 want	 to	 answer.	 In	 this	 case	 the
question	 is	 clear:	 Is	 the	 university	 (or	 someone	 within	 the	 university)
discriminating	against	women?

When	 I	 first	 told	 my	 wife	 about	 this	 example,	 her	 reaction	 was,	 “It’s
impossible.	 If	 each	 department	 discriminates	 one	 way,	 the	 school	 cannot
discriminate	 the	 other	 way.”	 And	 she’s	 right!	 The	 paradox	 offends	 our
understanding	 of	 discrimination,	 which	 is	 a	 causal	 concept,	 involving
preferential	response	to	an	applicant’s	reported	sex.	If	all	actors	prefer	one	sex
over	 the	other,	 the	group	as	a	whole	must	show	that	same	preference.	 If	 the
data	seem	to	say	otherwise,	it	must	mean	that	we	are	not	processing	the	data
properly,	in	accordance	with	the	logic	of	causation.	Only	with	such	logic,	and
with	a	clear	causal	story,	can	we	determine	the	university’s	innocence	or	guilt.

In	fact,	Bickel	and	Hammel	found	a	causal	story	that	completely	satisfied
them.	 They	 wrote	 an	 article,	 published	 in	 Science	 magazine	 in	 1975,
proposing	 a	 simple	 explanation:	 women	 were	 rejected	 in	 greater	 numbers
because	they	applied	to	harder	departments	to	get	into.

To	 be	 specific,	 a	 higher	 proportion	 of	 females	 than	 males	 applied	 to
departments	in	the	humanities	and	social	sciences.	There	they	faced	a	double



whammy:	 the	 number	 of	 students	 applying	 to	 get	 in	 was	 greater,	 and	 the
number	of	places	for	those	students	was	smaller.	On	the	other	hand,	females
did	 not	 apply	 as	 often	 to	 departments	 like	 mechanical	 engineering,	 which
were	easier	to	get	into.	These	departments	had	more	money	and	more	spaces
for	graduate	students—in	short,	a	higher	acceptance	rate.

Why	did	women	apply	to	departments	that	are	harder	to	get	into?	Perhaps
they	 were	 discouraged	 from	 applying	 to	 technical	 fields	 because	 they	 had
more	 math	 requirements	 or	 were	 perceived	 as	 more	 “masculine.”	 Perhaps
they	 had	 been	 discriminated	 against	 at	 earlier	 stages	 of	 their	 education:
society	tended	to	push	women	away	from	technical	fields,	as	Barbara	Burks’s
story	 shows	 far	 too	 clearly.	 But	 these	 circumstances	 were	 not	 under
Berkeley’s	 control	 and	 hence	 would	 not	 constitute	 discrimination	 by	 the
university.	Bickel	and	Hammel	concluded,	“The	campus	as	a	whole	did	not
engage	in	discrimination	against	women	applicants.”

At	 least	 in	passing,	I	would	like	 to	 take	note	of	 the	precision	of	Bickel’s
language	in	this	paper.	He	carefully	distinguishes	between	two	terms	that,	in
common	English,	are	often	taken	as	synonyms:	“bias”	and	“discrimination.”
He	defines	bias	as	“a	pattern	of	association	between	a	particular	decision	and
a	 particular	 sex	 of	 applicant.”	 Note	 the	 words	 “pattern”	 and	 “association.”
They	 tell	 us	 that	 bias	 is	 a	 phenomenon	 on	 rung	 one	 of	 the	 Ladder	 of
Causation.	On	 the	 other	 hand,	 he	 defines	 discrimination	 as	 “the	 exercise	 of
decision	influenced	by	the	sex	of	the	applicant	when	that	is	immaterial	to	the
qualifications	for	entry.”	Words	 like	“exercise	of	decision,”	“influence,”	and
“immaterial”	are	redolent	of	causation,	even	if	Bickel	could	not	bring	himself
to	utter	that	word	in	1975.	Discrimination,	unlike	bias,	belongs	on	rung	two	or
three	of	the	Ladder	of	Causation.

In	his	analysis,	Bickel	felt	that	the	data	should	be	stratified	by	department
because	 the	 departments	were	 the	 decision-making	 units.	Was	 this	 the	 right
call?	To	answer	that	question,	we	start	by	drawing	a	causal	diagram	(Figure
9.4).	It	is	also	very	illuminating	to	look	at	the	definition	of	discrimination	in
US	case	 law.	 It	uses	counterfactual	 terminology,	a	clear	signal	 that	we	have
climbed	 to	 level	 three	 of	 the	 Ladder	 of	 Causation.	 In	Carson	 v.	 Bethlehem
Steel	Corp.	(1996),	the	Seventh	Circuit	Court	wrote,	“The	central	question	in
any	 employment-discrimination	 case	 is	 whether	 the	 employer	 would	 have
taken	 the	 same	 action	 had	 the	 employee	 been	 of	 a	 different	 race	 (age,	 sex,
religion,	national	origin,	 etc.)	 and	everything	else	had	been	 the	 same.”	This
definition	 clearly	 expresses	 the	 idea	 that	 we	 should	 disable	 or	 “freeze”	 all
causal	 pathways	 that	 lead	 from	 gender	 to	 admission	 through	 any	 other
variable	 (e.g.,	 qualification,	 choice	 of	 department,	 etc.).	 In	 other	 words,



discrimination	equals	the	direct	effect	of	gender	on	the	admission	outcome.

FIGURE	9.4.	Causal	diagram	for	Berkeley	admission	paradox—simple	version.

We	 have	 seen	 before	 that	 conditioning	 on	 a	mediator	 is	 incorrect	 if	 we
want	to	estimate	the	total	effect	of	one	variable	on	another.	But	 in	a	case	of
discrimination,	according	 to	 the	court,	 it	 is	not	 the	 total	effect	but	 the	direct
effect	 that	 matters.	 Thus	 Bickel	 and	 Hammel	 are	 vindicated:	 under	 the
assumptions	 shown	 in	 Figure	 9.4,	 they	 were	 right	 to	 partition	 the	 data	 by
departments,	and	their	result	provides	a	valid	estimate	of	the	direct	effect	of
Gender	on	Outcome.	They	succeeded	even	though	the	language	of	direct	and
indirect	effects	was	not	available	to	Bickel	in	1973.

However,	 the	most	 interesting	part	of	 this	 story	 is	not	 the	original	paper
that	Bickel	and	Hammel	wrote	but	the	discussion	that	followed	it.	After	their
paper	was	published,	William	Kruskal	of	 the	University	of	Chicago	wrote	a
letter	 to	 Bickel	 arguing	 that	 their	 explanation	 did	 not	 really	 exonerate
Berkeley.	In	fact,	Kruskal	queried	whether	any	purely	observational	study	(as
opposed	 to	 a	 randomized	 experiment—say,	 using	 fake	 application	 forms)
could	ever	do	so.

To	me	their	exchange	of	letters	is	fascinating.	It	is	not	very	often	that	we
can	witness	two	great	minds	struggling	with	a	concept	(causation)	for	which
they	 lacked	 an	 adequate	 vocabulary.	 Bickel	 would	 later	 go	 on	 to	 earn	 a
MacArthur	 Foundation	 “genius”	 grant	 in	 1984.	 But	 in	 1975	 he	 was	 at	 the
beginning	of	his	career,	and	it	must	have	been	both	an	honor	and	a	challenge
for	 him	 to	 match	 wits	 with	 Kruskal,	 a	 giant	 of	 the	 American	 statistics
community.

In	 his	 letter	 to	 Bickel,	 Kruskal	 pointed	 out	 that	 the	 relation	 between
Department	 and	 Outcome	 could	 have	 an	 unmeasured	 confounder,	 such	 as
State	 of	Residence.	He	worked	 out	 a	 numerical	 example	 for	 a	 hypothetical
university	with	 two	sex-discriminating	departments	 that	produce	exactly	 the
same	 data	 as	 in	 Bickel’s	 example.	 He	 did	 this	 by	 assuming	 that	 both
departments	 accept	 all	 in-state	males	 and	 out-of-state	 females	 and	 reject	 all
out-of-state	 males	 and	 in-state	 females	 and	 that	 this	 is	 their	 only	 decision
criterion.	 Clearly	 this	 admissions	 policy	 is	 a	 blatant,	 textbook	 example	 of
discrimination.	 But	 because	 the	 total	 numbers	 of	 applicants	 of	 each	 gender
accepted	and	 rejected	were	exactly	 the	 same	as	 in	Bickel’s	 example,	Bickel



would	 have	 to	 conclude	 that	 there	 was	 no	 discrimination.	 According	 to
Kruskal,	 the	departments	 appear	 innocent	 because	Bickel	 has	 controlled	 for
only	one	variable	instead	of	two.

Kruskal	put	his	finger	exactly	on	the	weak	spot	in	Bickel’s	paper:	the	lack
of	a	clearly	justified	criterion	for	determining	which	variables	to	control	for.
Kruskal	did	not	offer	a	solution,	and	in	fact	his	letter	despairs	of	ever	finding
one.

Unlike	Kruskal,	we	can	draw	a	diagram	and	see	exactly	what	the	problem
is.	 Figure	 9.5	 shows	 the	 causal	 diagram	 representing	 Kruskal’s
counterexample.	 Does	 it	 look	 slightly	 familiar?	 It	 should!	 It	 is	 exactly	 the
same	diagram	that	Barbara	Burks	drew	in	1926,	but	with	different	variables.
One	 is	 tempted	 to	 say,	 “Great	minds	 think	 alike,”	 but	 perhaps	 it	 would	 be
more	appropriate	to	say	that	great	problems	attract	great	minds.

FIGURE	9.5.	Causal	diagram	for	Berkeley	admissions	paradox—Kruskal’s	version.

Kruskal	 argued	 that	 the	 analysis	 in	 this	 situation	 should	control	 for	both
the	department	and	 the	 state	of	 residence,	and	a	 look	at	Figure	9.5	 explains
why	 this	 is	 so.	 To	 disable	 all	 but	 the	 direct	 path,	 we	 need	 to	 stratify	 by
department.	This	closes	the	indirect	path	Gender	 	Department	 	Outcome.
But	in	so	doing,	we	open	the	spurious	path	Gender	 	Department	 	State	of
Residence	 	Outcome,	because	of	 the	collider	at	Department.	 If	we	control
for	 State	 of	 Residence	 as	 well,	 we	 close	 this	 path,	 and	 therefore	 any
correlation	remaining	must	be	due	to	the	(discriminatory)	direct	path	Gender	
	 Outcome.	 Lacking	 diagrams,	 Kruskal	 had	 to	 convince	 Bickel	 with

numbers,	and	in	fact	his	numbers	showed	the	same	thing.	If	we	do	not	adjust
for	any	variables,	then	females	have	a	lower	admission	rate.	If	we	adjust	for
Department,	then	females	appear	to	have	a	higher	admission	rate.	If	we	adjust
for	 both	 Department	 and	 State	 of	 Residence,	 then	 once	 again	 the	 numbers
show	a	lower	admission	rate	for	females.

From	 arguments	 like	 this,	 you	 can	 see	 why	 the	 concept	 of	 mediation
aroused	(and	still	arouses)	such	suspicions.	It	seems	unstable	and	hard	to	pin



down.	First	the	admission	rates	are	biased	against	women,	then	against	men,
then	against	women.	In	his	reply	to	Kruskal,	Bickel	continued	to	maintain	that
conditioning	 on	 a	 decision-making	 unit	 (Department)	 is	 somehow	 different
from	conditioning	on	a	criterion	 for	a	decision	 (State	of	Residence).	But	he
did	 not	 sound	 at	 all	 confident	 about	 it.	 He	 asks	 plaintively,	 “I	 see	 a
nonstatistical	question	here:	What	do	we	mean	by	bias?”	Why	does	the	bias
sign	change	depending	on	the	way	we	measure	it?	In	fact	he	had	the	right	idea
when	 he	 distinguished	 between	 bias	 and	 discrimination.	 Bias	 is	 a	 slippery
statistical	notion,	which	may	disappear	 if	you	slice	 the	data	a	different	way.
Discrimination,	as	a	causal	concept,	reflects	reality	and	must	remain	stable.

The	 missing	 phrase	 in	 both	 their	 vocabularies	 was	 “hold	 constant.”	 To
disable	the	indirect	path	from	Gender	to	Outcome,	we	must	hold	constant	the
variable	Department	and	then	tweak	the	variable	Gender.	When	we	hold	the
department	 constant,	we	prevent	 (figuratively	 speaking)	 the	 applicants	 from
choosing	which	department	 to	 apply	 to.	Because	 statisticians	 do	not	 have	 a
word	for	this	concept,	they	do	something	superficially	similar:	they	condition
on	Department.	That	was	exactly	what	Bickel	had	done:	he	looked	at	the	data
department-by-department	 and	 concluded	 that	 there	 was	 no	 evidence	 of
discrimination	against	women.	That	procedure	is	valid	when	Department	and
Outcome	 are	 unconfounded;	 in	 that	 case,	 seeing	 is	 the	 same	 as	 doing.	 But
Kruskal	correctly	asked,	“What	if	there	is	a	confounder,	State	of	Residence?”
He	 probably	 didn’t	 realize	 that	 he	was	 following	 in	 the	 footsteps	 of	Burks,
who	had	drawn	essentially	the	same	diagram.

I	cannot	stress	enough	how	often	this	blunder	has	been	repeated	over	the
years—conditioning	on	the	mediator	instead	of	holding	the	mediator	constant.
For	 that	 reason	 I	 call	 it	 the	 Mediation	 Fallacy.	 Admittedly,	 the	 blunder	 is
harmless	 if	 there	 is	 no	 confounding	 of	 the	 mediator	 and	 the	 outcome.
However,	 if	 there	 is	 confounding,	 it	 can	 completely	 reverse	 the	 analysis,	 as
Kruskal’s	numerical	example	showed.	It	can	lead	the	investigator	to	conclude
there	is	no	discrimination	when	in	fact	there	is.

Burks	and	Kruskal	were	unusual	in	recognizing	the	Mediation	Fallacy	as	a
blunder,	although	they	didn’t	exactly	offer	a	solution.	R.	A.	Fisher	fell	victim
to	 the	 same	 blunder	 in	 1936,	 and	 eighty	 years	 later	 statisticians	 are	 still
struggling	with	 the	problem.	Fortunately	 there	has	been	huge	progress	since
the	 time	of	Fisher.	Epidemiologists,	 for	example,	know	now	that	one	has	 to
watch	 out	 for	 confounders	 between	 mediator	 and	 outcome.	 Yet	 those	 who
eschew	 the	 language	 of	 diagrams	 (some	 economists	 still	 do)	 complain	 and
confess	that	it	is	a	torture	to	explain	what	this	warning	means.



Thankfully,	the	problem	that	Kruskal	once	called	“perhaps	insoluble”	was
solved	two	decades	ago.	I	have	this	strange	feeling	that	Kruskal	would	have
enjoyed	the	solution,	and	in	my	fantasy	I	imagine	showing	him	the	power	of
the	do-calculus	and	the	algorithmization	of	counterfactuals.	Unfortunately,	he
retired	in	1990,	just	when	the	rules	of	do-calculus	were	being	shaped,	and	he
died	in	2005.

I’m	sure	 that	 some	 readers	are	wondering:	What	 finally	happened	 in	 the
Berkeley	case?	The	answer	is,	nothing.	Hammel	and	Bickel	were	convinced
that	Berkeley	had	nothing	to	worry	about,	and	indeed	no	lawsuits	or	federal
investigations	 ever	 materialized.	 The	 data	 hinted	 at	 reverse	 discrimination
against	males,	and	in	fact	there	was	explicit	evidence	of	this:	“In	most	of	the
cases	 involving	 favored	 status	 for	 women	 it	 appears	 that	 the	 admissions
committees	were	 seeking	 to	overcome	 long-established	 shortages	of	women
in	their	fields,”	Bickel	wrote.	Just	three	years	later,	a	lawsuit	over	affirmative
action	on	another	campus	of	the	University	of	California	went	all	the	way	to
the	Supreme	Court.	Had	 the	Supreme	Court	 struck	down	affirmative	action,
such	 “favored	 status	 for	women”	might	 have	 become	 illegal.	 However,	 the
Supreme	 Court	 upheld	 affirmative	 action,	 and	 the	 Berkeley	 case	 became	 a
historical	footnote.

A	wise	man	leaves	the	final	word	not	with	the	Supreme	Court	but	with	his
wife.	Why	did	mine	have	such	a	strong	 intuitive	conviction	 that	 it	 is	utterly
impossible	 for	 a	 school	 to	 discriminate	 while	 each	 of	 its	 departments	 acts
fairly?	 It	 is	 a	 theorem	of	 causal	 calculus	 similar	 to	 the	 sure-thing	principle.
The	 sure-thing	 principle,	 as	 Jimmie	 Savage	 originally	 stated	 it,	 pertains	 to
total	effects,	while	this	theorem	holds	for	direct	effects.	The	very	definition	of
a	 direct	 effect	 on	 a	 global	 level	 relies	 on	 aggregating	 direct	 effects	 in	 the
subpopulations.

To	put	it	succinctly,	local	fairness	everywhere	implies	global	fairness.	My
wife	was	right.

DAISY,	THE	KITTENS	AND	INDIRECT	EFFECTS

So	far	we	have	discussed	the	concepts	of	direct	and	indirect	effects	in	a	vague
and	intuitive	way,	but	I	have	not	given	them	a	precise	scientific	meaning.	It	is
long	past	time	for	us	to	rectify	this	omission.

Let’s	start	with	the	direct	effect,	because	it	is	undoubtedly	easier,	and	we
can	define	a	version	of	it	using	the	do-calculus	(i.e.,	at	rung	two	of	the	Ladder



of	 Causation).	 We’ll	 consider	 first	 the	 simplest	 case,	 which	 includes	 three
variables:	a	treatment	X,	an	outcome	Y,	and	a	mediator	M.	We	get	the	direct
effect	of	X	on	Y	when	we	“wiggle”	X	without	allowing	M	 to	change.	 In	 the
context	of	the	Berkeley	admissions	paradox	example,	we	force	everybody	to
apply	to	the	history	department—that	is,	we	do(M	=	0).	We	randomly	assign
some	people	to	report	their	sex	(on	the	application)	as	male	(do(X	=	1))	and
some	 to	 report	 it	 as	 female	 (do(X	 =	 0)),	 regardless	 of	 their	 actual	 genders.
Then	we	observe	the	difference	in	admission	rates	between	the	two	reporting
groups.	 The	 result	 is	 called	 the	 controlled	 direct	 effect,	 or	 CDE(0).	 In
symbols,

CDE(0)	=	P(Y	=	1	|	do(X	=	1),	do(M	=	0))	–	P(Y	=	1	|	do(X	=	0),	do(M	=
0))									(9.1)

The	“0”	in	CDE(0)	indicates	that	we	forced	the	mediator	to	take	on	the	value
zero.	We	could	also	do	 the	same	experiment,	 forcing	everybody	 to	apply	 to
engineering:	do(M	=	1).	We	would	denote	the	resulting	controlled	direct	effect
as	CDE(1).

Already	we	see	one	difference	between	direct	effects	and	total	effects:	we
have	 two	 different	 versions	 of	 the	 controlled	 direct	 effect,	 CDE(0)	 and
CDE(1).	Which	 one	 is	 right?	One	 option	 is	 simply	 to	 report	 both	 versions.
Indeed,	 it	 is	 not	 unthinkable	 that	 one	 department	 will	 discriminate	 against
females	and	 the	other	 against	males,	 and	 it	would	be	 interesting	 to	 find	out
who	does	what.	That	was,	after	all,	Hammel’s	original	intention.

However,	 I	 would	 not	 recommend	 running	 this	 experiment,	 and	 here	 is
why.	 Imagine	 an	 applicant	 named	 Joe	 whose	 lifetime	 dream	 is	 to	 study
engineering	 and	 who	 happened	 to	 be	 (randomly)	 assigned	 to	 apply	 to	 the
history	 department.	 Having	 sat	 on	 a	 few	 admissions	 committees,	 I	 can
categorically	 vow	 that	 Joe’s	 application	 would	 look	 awfully	 strange	 to	 the
committee.	His	A+	in	electromagnetic	waves	and	B–in	European	nationalism
would	 totally	 distort	 the	 committee’s	 decision,	 regardless	 of	 whether	 he
marked	“male”	or	“female”	on	his	application.	The	proportion	of	males	and
females	admitted	under	these	distortions	would	hardly	reflect	the	admissions
policy	compared	to	applicants	who	normally	apply	to	the	history	department.

Luckily,	 an	 alternative	 avoids	 the	 pitfalls	 of	 this	 overcontrolled
experiment.	We	 instruct	 the	applicants	 to	 report	a	 randomized	gender	but	 to
apply	 to	 the	department	 they	would	have	preferred.	We	call	 this	 the	natural
direct	effect	(NDE),	because	every	applicant	ends	up	in	a	department	of	his	or
her	choice.	The	“would	have”	phrasing	is	a	clue	that	NDE’s	formal	definition
requires	 counterfactuals.	 For	 readers	 who	 enjoy	 mathematics,	 here	 is	 the



definition	expressed	as	a	formula:

NDE	=	P(YM	=	M0	=	1	|	do(X	=	1))	–	P(YM	=	M0	=	1	|	do(X	=	0))									(9.2)

The	interesting	term	is	the	first,	which	stands	for	the	probability	that	a	female
student	selecting	a	department	of	her	choice	(M	=	M0)	would	be	admitted	 if
she	faked	her	sex	to	read	“male”	(do(X	=	1)).	Here	the	choice	of	department	is
governed	by	the	actual	sex	while	admission	is	decided	by	the	reported	(fake)
sex.	 Since	 the	 former	 cannot	 be	mandated,	we	 cannot	 translate	 this	 term	 to
one	involving	do-operators;	we	need	to	invoke	the	counterfactual	subscript.

Now	you	know	how	we	define	the	controlled	direct	effect	and	the	natural
direct	 effect,	 but	 how	 do	 we	 compute	 them?	 The	 task	 is	 simple	 for	 the
controlled	 direct	 effect;	 because	 it	 can	 be	 expressed	 as	 a	do-expression,	we
need	 only	 use	 the	 laws	 of	do-calculus	 to	 reduce	 the	 do-expressions	 to	 see-
expressions	 (i.e.,	 conditional	 probabilities,	 which	 can	 be	 estimated	 from
observational	data).

The	 natural	 direct	 effect	 poses	 a	 greater	 challenge,	 though,	 because	 it
cannot	 be	 defined	 in	 a	 do-expression.	 It	 requires	 the	 language	 of
counterfactuals,	and	hence	it	cannot	be	estimated	using	the	do-calculus.	It	was
one	of	the	greatest	thrills	in	my	life	when	I	managed	to	strip	the	formula	for
the	 NDE	 from	 all	 of	 its	 counterfactual	 subscripts.	 The	 result,	 called	 the
Mediation	 Formula,	 makes	 the	 NDE	 a	 truly	 practical	 tool	 because	 we	 can
estimate	it	from	observational	data.

Indirect	effects,	unlike	direct	effects,	have	no	“controlled”	version	because
there	is	no	way	to	disable	the	direct	path	by	holding	some	variable	constant.
But	they	do	have	a	“natural”	version,	the	natural	indirect	effect	(NIE),	which
is	defined	(like	NDE)	using	counterfactuals.	To	motivate	the	definition,	I	will
consider	a	somewhat	playful	example	that	my	coauthor	suggested.

My	 coauthor	 and	 his	 wife	 adopted	 a	 dog	 named	Daisy,	 a	 rambunctious
poodle-and-Chihuahua	mix	with	a	mind	of	her	own.	Daisy	was	not	as	easy	to
house-train	as	their	previous	dog,	and	after	several	weeks	she	was	still	having
occasional	 “accidents”	 inside	 the	 house.	 But	 then	 something	 very	 odd
happened.	 Dana	 and	 his	 wife	 brought	 home	 three	 foster	 kittens	 from	 the
animal	shelter,	and	the	“accidents”	stopped.	The	foster	kittens	remained	with
them	 for	 three	 weeks,	 and	 Daisy	 did	 not	 break	 her	 training	 a	 single	 time
during	that	period.

Was	 it	 just	 coincidence,	 or	 had	 the	 kittens	 somehow	 inspired	 Daisy	 to
civilized	behavior?	Dana’s	wife	 suggested	 that	 the	kittens	might	have	given
Daisy	a	sense	of	belonging	to	a	“pack,”	and	she	would	not	want	to	mess	up



the	area	where	the	pack	lived.	This	 theory	was	reinforced	when,	a	few	days
after	the	kittens	went	back	to	the	shelter,	Daisy	started	urinating	in	the	house
again,	as	if	she	had	never	heard	of	good	manners.

But	 then	 it	 occurred	 to	Dana	 that	 something	 else	 had	 changed	when	 the
kittens	arrived	and	departed.	While	the	kittens	had	been	there,	Daisy	had	to	be
either	separated	from	them	or	carefully	supervised.	So	she	spent	long	periods
in	her	crate	or	being	closely	watched	by	a	human,	even	leashed	to	a	human.
Both	 interventions,	 crating	 and	 leashing,	 also	 happen	 to	 be	 recognized
methods	for	housebreaking.

When	 the	kittens	 left,	 the	Mackenzies	 stopped	 the	 intensive	 supervision,
and	 the	uncouth	behavior	 returned.	Dana	hypothesized	 that	 the	effect	of	 the
kittens	was	not	direct	(as	in	the	pack	theory)	but	indirect,	mediated	by	crating
and	supervision.	Figure	9.6	shows	a	causal	graph.	At	this	point,	Dana	and	his
wife	tried	an	experiment.	They	treated	Daisy	as	they	would	have	with	kittens
around,	keeping	her	in	a	crate	and	supervising	her	carefully	outside	the	crate.
If	 the	 accidents	 stopped,	 they	 could	 reasonably	 conclude	 that	 the	 mediator
was	 responsible.	 If	 they	 didn’t	 stop,	 then	 the	 direct	 effect	 (the	 pack
psychology)	would	become	more	plausible.

FIGURE	9.6.	Causal	diagram	for	Daisy’s	house	training.

In	 the	 hierarchy	 of	 scientific	 evidence,	 their	 experiment	 would	 be
considered	 very	 shaky—certainly	 not	 one	 that	 could	 ever	 be	 published	 in	 a
scientific	 journal.	A	 real	 experiment	would	 have	 to	 be	 carried	 out	 on	more
than	 just	 one	 dog	 and	 in	 both	 the	 presence	 and	 absence	 of	 the	 kittens.
Nevertheless,	 it	 is	 the	 causal	 logic	 behind	 the	 experiment	 that	 concerns	 us
here.	We	are	intending	to	recreate	what	would	have	happened	had	the	kittens
not	been	present	and	had	the	mediator	been	set	to	the	value	it	would	take	with
the	 kittens	 present.	 In	 other	 words,	 we	 remove	 the	 kittens	 (intervention
number	one)	 and	 supervise	 the	dog	as	we	would	 if	 the	kittens	were	present
(intervention	number	two).

When	 you	 look	 carefully	 at	 the	 above	 paragraph,	 you	might	 notice	 two
“would	haves,”	which	are	counterfactual	conditions.	The	kittens	were	present
when	the	dog	changed	her	behavior—but	we	ask	what	would	have	happened
if	 they	 had	 not	 been	 present.	 Likewise,	 if	 the	 kittens	 had	 not	 been	 present,
Dana	 would	 not	 have	 supervised	 Daisy—but	 we	 ask	 what	 would	 have



happened	if	he	had.

You	 can	 see	 why	 statisticians	 struggled	 for	 so	 long	 to	 define	 indirect
effects.	 If	 even	 a	 single	 counterfactual	 was	 outlandish,	 then	 double-nested
counterfactuals	were	completely	beyond	the	pale.	Nevertheless,	this	definition
conforms	closely	with	our	natural	 intuition	about	causation.	Our	 intuition	 is
so	compelling	 that	Dana’s	wife,	with	no	special	 training,	 readily	understood
the	logic	of	the	proposed	experiment.

For	readers	who	are	comfortable	with	formulas,	here	is	how	to	define	the
NIE	that	we	have	just	described	in	words:

NIE	=	P(YM	=	M1	=	1	|	do(X	=	0))–P(YM	=	M0	=	1	|	do(X	=	0))									(9.3)

The	first	P	term	is	the	outcome	of	the	Daisy	experiment:	the	probability	of
successful	house	training	(Y	=	1),	given	that	we	do	not	introduce	other	pets	(X
=	0)	but	set	the	mediator	to	the	value	it	would	have	if	we	had	introduced	them
(M	=	M1).	We	contrast	 this	with	 the	probability	of	successful	house	 training
under	“normal”	conditions,	with	no	other	pets.	Note	 that	 the	counterfactual,
M1,	 has	 to	 be	 computed	 for	 each	 animal	 on	 a	 case-by-case	 basis:	 different
dogs	 might	 have	 different	 needs	 for	 Crating/Supervision.	 This	 puts	 the
indirect	 effect	 out	 of	 reach	 of	 the	 do-calculus.	 It	 may	 also	 render	 the
experiment	unfeasible,	because	 the	experimenter	may	not	know	M1(u)	 for	a
particular	dog	u.	Nevertheless,	assuming	there	is	no	confounding	between	M
and	 Y,	 the	 natural	 indirect	 effect	 can	 still	 be	 computed.	 It	 is	 possible	 to
remove	 all	 the	 counterfactuals	 from	 the	 NIE	 and	 arrive	 at	 a	 Mediation
Formula	 for	 it,	 like	 the	 one	 for	 the	 NDE.	 This	 quantity,	 which	 requires
information	from	the	third	rung	of	the	Ladder	of	Causation,	can	nevertheless
be	reduced	to	an	expression	that	can	be	computed	with	rung-one	data.	Such	a
reduction	 is	 only	 possible	 because	 we	 have	 made	 an	 assumption	 of	 no
confounding,	which,	owing	 to	 the	deterministic	nature	of	 the	equations	 in	a
structural	causal	model,	is	on	rung	three.

To	finish	Daisy’s	story,	the	experiment	was	inconclusive.	It’s	questionable
whether	Dana	and	his	wife	monitored	Daisy	as	carefully	as	they	would	have	if
they	had	been	keeping	her	 away	 from	kittens.	 (So	 it’s	not	 clear	 that	M	was
truly	 set	 to	M1.)	 With	 patience	 and	 time—it	 took	 several	 months—Daisy
eventually	learned	to	“do	her	business”	outside.	Even	so,	Daisy’s	story	holds
some	useful	lessons.	Simply	by	being	attuned	to	the	possibility	of	a	mediator,
Dana	was	able	to	conjecture	another	causal	mechanism.	That	mechanism	had
an	important	practical	consequence:	he	and	his	wife	did	not	have	to	keep	the
house	filled	with	a	foster	kitten	“pack”	for	the	rest	of	Daisy’s	life.



MEDIATION	IN	LINEAR	WONDERLAND

When	 you	 first	 hear	 about	 counterfactuals,	 you	 might	 wonder	 if	 such	 an
elaborate	machinery	is	really	needed	to	express	an	indirect	effect.	Surely,	you
might	argue,	an	indirect	effect	is	simply	what	is	left	over	after	you	take	away
the	direct	effect.	Alternatively,	we	could	write,

Total	Effect	=	Direct	Effect	+	Indirect	Effect									(9.4)

The	 short	 answer	 is	 that	 this	 does	 not	 work	 in	 models	 that	 involve
interactions	(sometimes	called	moderation).	For	example,	imagine	a	drug	that
causes	the	body	to	secrete	an	enzyme	that	acts	as	a	catalyst:	it	combines	with
the	drug	to	cure	a	disease.	The	total	effect	of	the	drug	is,	of	course,	positive.
But	the	direct	effect	is	zero,	because	if	we	disable	the	mediator	(for	example,
by	preventing	the	body	from	stimulating	the	enzyme),	the	drug	will	not	work.
The	indirect	effect	 is	also	zero,	because	if	we	don’t	receive	the	drug	and	do
artificially	 get	 the	 enzyme,	 then	 the	 disease	will	 not	 be	 cured.	 The	 enzyme
itself	has	no	curing	power.	Thus	Equation	9.4	does	not	hold:	the	total	effect	is
positive	but	the	direct	and	indirect	effects	are	zero.

However,	Equation	9.4	does	hold	automatically	 in	one	situation,	with	no
apparent	 need	 to	 invoke	 counterfactuals.	 That	 is	 the	 case	 of	 a	 linear	 causal
model,	of	the	sort	that	we	saw	in	Chapter	8.	As	discussed	there,	linear	models
do	not	allow	interactions,	which	can	be	both	a	virtue	and	a	drawback.	It	is	a
virtue	 in	 the	 sense	 that	 it	makes	mediation	 analysis	much	 easier,	 but	 it	 is	 a
drawback	if	we	want	to	describe	a	real-world	causal	process	that	does	involve
interactions.

Because	mediation	analysis	 is	so	much	easier	for	 linear	models,	 let’s	see
how	it	 is	done	and	what	 the	pitfalls	are.	Suppose	we	have	a	causal	diagram
that	 looks	 like	Figure	9.7.	Because	we	are	working	with	a	 linear	model,	we
can	 represent	 the	 strength	 of	 each	 effect	 with	 a	 single	 number.	 The	 labels
(path	coefficients)	indicate	that	increasing	the	Treatment	variable	by	one	unit
will	increase	the	Mediator	variable	by	two	units.	Similarly,	a	one-unit	increase
in	Mediator	will	increase	Outcome	by	three	units,	and	a	one-unit	increase	in
Treatment	will	increase	Outcome	by	seven	units.	These	are	all	direct	effects.
Here	 we	 come	 to	 the	 first	 reason	 why	 linear	 models	 are	 so	 simple:	 direct
effects	 do	 not	 depend	 on	 the	 level	 of	 the	 mediator.	 That	 is,	 the	 controlled
direct	effect	CDE(m)	is	the	same	for	all	values	m,	and	we	can	simply	speak	of
“the”	direct	effect.

What	would	be	the	total	effect	of	an	intervention	that	causes	Treatment	to
increase	 by	 one	 unit?	 First,	 this	 intervention	 directly	 causes	 Outcome	 to



increase	 by	 seven	 units	 (if	 we	 hold	 Mediator	 constant).	 It	 also	 causes
Mediator	to	increase	by	two	units.	Finally,	because	each	one-unit	increase	in
Mediator	directly	causes	a	three-unit	increase	in	Outcome,	a	two-unit	increase
in	Mediator	will	lead	to	an	additional	six-unit	increase	in	Outcome.	So	the	net
increase	 in	Outcome,	from	both	causal	pathways,	will	be	 thirteen	units.	The
first	 seven	units	 correspond	 to	 the	direct	 effect,	 and	 the	 remaining	 six	units
correspond	to	the	indirect	effect.	Easy	as	pie!

FIGURE	9.7.	Example	of	a	linear	model	(path	diagram)	with	mediation.

In	 general,	 if	 there	 is	more	 than	 one	 indirect	 pathway	 from	X	 to	Y,	 we
evaluate	 the	 indirect	 effect	 along	each	pathway	by	 taking	 the	product	of	 all
the	path	coefficients	along	that	pathway.	Then	we	get	the	total	indirect	effect
by	adding	up	all	the	indirect	causal	pathways.	Finally,	the	total	effect	of	X	on
Y	is	the	sum	of	the	direct	and	indirect	effects.	This	“sum	of	products”	rule	has
been	 used	 since	 Sewall	 Wright	 invented	 path	 analysis,	 and,	 formally
speaking,	it	indeed	follows	from	the	do-operator	definition	of	total	effect.

In	1986,	Reuben	Baron	and	David	Kenny	articulated	a	set	of	principles	for
detecting	 and	 evaluating	mediation	 in	 a	 system	 of	 equations.	 The	 essential
principles	are,	first,	that	the	variables	are	all	related	by	linear	equations,	which
are	estimated	by	 fitting	 them	 to	 the	data.	Second,	direct	and	 indirect	effects
are	 computed	 by	 fitting	 two	 equations	 to	 the	 data:	 one	 with	 the	 mediator
included	 and	 one	 with	 the	 mediator	 excluded.	 Significant	 change	 in	 the
coefficients	 when	 the	 mediator	 is	 introduced	 is	 taken	 as	 evidence	 of
mediation.

The	simplicity	and	plausibility	of	the	Baron-Kenny	method	took	the	social
sciences	 by	 storm.	As	 of	 2014,	 their	 article	 ranks	 thirty-third	 on	 the	 list	 of
most	frequently	cited	scientific	papers	of	all	time.	As	of	2017,	Google	Scholar
reports	that	73,000	scholarly	articles	have	cited	Baron	and	Kenny.	Just	think
about	 that!	 They’ve	 been	 cited	more	 times	 than	Albert	 Einstein,	more	 than
Sigmund	Freud,	more	 than	almost	 any	other	 famous	 scientist	 you	can	 think
of.	Their	article	ranks	second	among	all	papers	in	psychology	and	psychiatry,
and	yet	it’s	not	about	psychology	at	all.	It’s	about	noncausal	mediation.

The	unprecedented	popularity	of	the	Baron-Kenny	approach	undoubtedly
stems	 from	 two	 factors.	 First,	 mediation	 is	 in	 high	 demand.	 Our	 desire	 to



understand	“how	nature	works”	(i.e.,	to	find	the	M	in	X	 	M	 	Y)	is	perhaps
even	stronger	than	our	desire	to	quantify	it.	Second,	the	method	reduces	easily
to	a	cookbook	procedure	that	is	based	on	familiar	concepts	from	statistics,	a
discipline	 that	 has	 long	 claimed	 to	 have	 exclusive	 ownership	 of	 objectivity
and	 empirical	 validity.	 So	 hardly	 anyone	 noticed	 the	 grand	 leap	 forward
involved,	the	fact	that	a	causal	quantity	(mediation)	was	defined	and	assessed
by	purely	statistical	means.

However,	 cracks	 in	 this	 regression-based	 edifice	 began	 to	 appear	 in	 the
early	2000s,	when	practitioners	tried	to	generalize	the	sum-of-products	rule	to
nonlinear	systems.	That	rule	involves	two	assumptions—effects	along	distinct
paths	are	additive,	and	path	coefficients	along	one	path	multiply—and	both	of
them	lead	to	wrong	answers	in	nonlinear	models,	as	we	will	see	below.

It	has	 taken	a	 long	 time,	but	 the	practitioners	of	mediation	analysis	have
finally	 woken	 up.	 In	 2001,	 my	 late	 friend	 and	 colleague	 Rod	 McDonald
wrote,	“I	 think	 the	best	way	to	discuss	 the	question	of	detecting	or	showing
moderation	or	mediation	in	a	regression	is	to	set	aside	the	entire	literature	on
these	topics	and	start	from	scratch.”	The	latest	literature	on	mediation	seems
to	 heed	 McDonald’s	 advice;	 counterfactual	 and	 graphical	 methods	 are
pursued	much	more	actively	 than	 the	regression	approach.	And	in	2014,	 the
father	of	 the	Baron-Kenny	approach,	David	Kenny,	posted	a	new	section	on
his	website	called	“causal	mediation	analysis.”	Though	I	would	not	call	him	a
convert	 yet,	 Kenny	 clearly	 recognizes	 that	 times	 are	 changing	 and	 that
mediation	analysis	is	entering	a	new	era.

For	now,	let’s	look	at	one	very	simple	example	of	how	our	expectations	go
wrong	 when	 we	 leave	 Linear	 Wonderland.	 Consider	 Figure	 9.8,	 a	 slight
modification	of	Figure	9.7,	where	a	job	applicant	will	decide	to	take	a	job	if
and	only	 if	 the	 salary	offered	exceeds	a	 certain	 threshold	value,	 in	our	case
ten.	The	salary	offer	is	determined,	as	shown	in	the	diagram,	by	7	×	Education
+	 3	 ×	 Skill.	 Note	 that	 the	 functions	 determining	 Skill	 and	 Salary	 are	 still
assumed	to	be	linear,	but	the	relationship	of	Salary	to	Outcome	is	nonlinear,
because	it	has	a	threshold	effect.

Let	 us	 compute,	 for	 this	 model,	 the	 total,	 direct,	 and	 indirect	 effects
associated	with	 increasing	Education	by	one	unit.	The	 total	 effect	 is	 clearly
equal	to	one,	because	as	Education	shifts	from	zero	to	one,	Salary	goes	from
zero	 to	(7	×	1)	+	(3	×	2)	=	13,	which	 is	above	 the	 threshold	of	 ten,	making
Outcome	switch	from	zero	to	one.

Remember	 that	 the	 natural	 indirect	 effect	 is	 the	 expected	 change	 in	 the
outcome,	given	that	we	make	no	change	to	Education	but	set	Skill	at	the	level



it	would	take	if	we	had	increased	Education	by	one.	It’s	easy	to	see	that	in	this
case,	Salary	goes	from	zero	to	2	×	3	=	6.	This	is	below	the	threshold	of	ten,	so
the	applicant	will	turn	the	offer	down.	Thus	NIE	=	0.

FIGURE	9.8.	Mediation	combined	with	a	threshold	effect.

Now	 what	 about	 the	 direct	 effect?	 As	 mentioned	 before,	 we	 have	 the
problem	of	figuring	out	what	value	to	hold	the	mediator	at.	If	we	hold	Skill	at
the	level	it	had	before	we	changed	Education,	then	Salary	will	increase	from
zero	to	seven,	making	Outcome	=	0.	Thus,	CDE(0)	=	0.	On	the	other	hand,	if
we	 hold	 Skill	 at	 the	 level	 it	 attains	 after	 the	 change	 in	 Education	 (namely
two),	 Salary	 will	 increase	 from	 six	 to	 thirteen.	 This	 changes	 the	 Outcome
from	 zero	 to	 one,	 because	 thirteen	 is	 above	 the	 applicant’s	 threshold	 for
accepting	the	job	offer.	So	CDE(2)	=	1.

Thus,	 the	 direct	 effect	 is	 either	 zero	 or	 one	 depending	 on	 the	 constant
value	we	choose	for	the	mediator.	Unlike	in	Linear	Wonderland,	the	choice	of
a	value	 for	 the	mediator	makes	a	difference,	and	we	have	a	dilemma.	 If	we
want	to	preserve	the	additive	principle,	Total	Effect	=	Direct	Effect	+	Indirect
Effect,	we	need	to	use	CDE(2)	as	our	definition	of	the	causal	effect.	But	this
seems	 arbitrary	 and	 even	 somewhat	 unnatural.	 If	 we	 are	 contemplating	 a
change	 in	Education	and	we	want	 to	know	 its	direct	 effect,	we	would	most
likely	want	to	keep	Skill	at	the	level	it	already	has.	In	other	words,	it	makes
more	 intuitive	 sense	 to	 use	CDE(0)	 as	 our	 direct	 effect.	Not	 only	 that,	 this
agrees	 with	 the	 natural	 direct	 effect	 in	 this	 example.	 But	 then	 we	 lose
additivity:	Total	Effect	≠	Direct	Effect	+	Indirect	Effect.

However—quite	surprisingly—a	somewhat	modified	version	of	additivity
does	 hold	 true,	 not	 only	 in	 this	 example	 but	 in	 general.	Readers	who	don’t
mind	doing	a	little	computation	might	be	interested	in	computing	the	NIE	of
going	 back	 from	X	 =	 1	 to	X	 =	 0.	 In	 this	 case	 the	 salary	 offer	 drops	 from
thirteen	to	seven,	and	the	Outcome	drops	from	one	to	zero	(i.e.,	the	applicant
does	not	 accept	 the	offer).	So	computed	 in	 the	 reverse	direction,	NIE	=	–1.
The	cool	and	amazing	fact	is	that

Total	Effect	(X	=	0	 	X	=	1)	=	NDE	(X	=	0	 	X	=	1)	–	NIE	(X	=	1	 	X	=	0)

or	 in	 this	 case,	 1	 =	 0–(–1).	 This	 is	 the	 “natural	 effects”	 version	 of	 the
additivity	principle,	only	it	is	a	subtractivity	principle!	I	was	extremely	happy



to	 see	 this	 version	 of	 additivity	 emerging	 from	 the	 analysis,	 despite	 the
nonlinearity	of	the	equations.

A	 staggering	 amount	 of	 ink	 has	 been	 spilled	 on	 the	 “right”	 way	 to
generalize	 direct	 and	 indirect	 effects	 from	 linear	 to	 nonlinear	 models.
Unfortunately,	most	 of	 the	 articles	 go	 at	 the	 problem	 backward.	 Instead	 of
rethinking	from	scratch	what	we	mean	by	direct	and	indirect	effects,	they	start
from	the	supposition	that	we	only	have	to	tweak	the	linear	definitions	a	little
bit.	 For	 example,	 in	 Linear	 Wonderland	 we	 saw	 that	 the	 indirect	 effect	 is
given	 by	 a	 product	 of	 two	 path	 coefficients.	 So	 some	 researchers	 tried	 to
define	 the	 indirect	 effect	 in	 the	 form	 of	 a	 product	 of	 two	 quantities,	 one
measuring	the	effect	of	X	on	M,	the	other	the	effect	of	M	on	Y.	This	came	to
be	known	as	 the	 “product	 of	 coefficients”	method.	But	we	 also	 saw	 that	 in
Linear	Wonderland	the	indirect	effect	is	given	by	the	difference	between	the
total	 effect	 and	 the	 direct	 effect.	 So	 another,	 equally	 dedicated	 group	 of
researchers	defined	 the	 indirect	 effect	 as	 a	 difference	of	 two	quantities,	 one
measuring	the	total	effect,	the	other	the	direct	effect.	This	came	to	be	known
as	the	“difference	in	coefficients”	method.

Which	of	these	is	right?	Neither!	Both	groups	of	researchers	confused	the
procedure	with	 the	meaning.	The	procedure	 is	mathematical;	 the	meaning	is
causal.	In	fact,	the	problem	goes	even	deeper:	the	indirect	effect	never	had	a
meaning	 for	 regression	 analysts	 outside	 the	 bubble	 of	 linear	 models.	 The
indirect	effect’s	only	meaning	was	as	the	outcome	of	an	algebraic	procedure
(“multiply	the	path	coefficients”).	Once	that	procedure	was	taken	away	from
them,	they	were	cast	adrift,	like	a	boat	without	an	anchor.

One	reader	of	my	book	Causality	described	this	lost	feeling	beautifully	in
a	 letter	 to	me.	Melanie	Wall,	 now	 at	 Columbia	University,	 used	 to	 teach	 a
modeling	 course	 to	 biostatistics	 and	 public	 health	 students.	 One	 time,	 she
explained	 to	 her	 students	 as	 usual	 how	 to	 compute	 the	 indirect	 effect	 by
taking	 the	 product	 of	 direct	 path	 coefficients.	A	 student	 asked	her	what	 the
indirect	effect	meant.	“I	gave	the	answer	that	I	always	give,	that	the	indirect
effect	is	the	effect	that	a	change	in	X	has	on	Y	through	its	relationship	with	the
mediator,	Z,”	Wall	told	me.

But	 the	 student	 was	 persistent.	 He	 remembered	 how	 the	 teacher	 had
explained	the	direct	effect	as	the	effect	remaining	after	holding	the	mediator
fixed,	and	he	asked,	“Then	what	is	being	held	constant	when	we	interpret	an
indirect	effect?”

Wall	 didn’t	 know	what	 to	 say.	 “I’m	 not	 sure	 I	 have	 a	 good	 answer	 for
you,”	she	said.	“How	about	I	get	back	to	you?”



This	was	in	October	2001,	just	four	months	after	I	had	presented	a	paper
on	causal	mediation	at	the	Uncertainty	in	Artificial	Intelligence	conference	in
Seattle.	 Needless	 to	 say,	 I	 was	 eager	 to	 impress	 Melanie	 with	 my	 newly
acquired	 solution	 to	 her	 puzzle,	 and	 I	wrote	 to	 her	 the	 same	 answer	 I	 have
given	you	here:	“The	indirect	effect	of	X	on	Y	is	the	increase	we	would	see	in
Y	 while	 holding	 X	 constant	 and	 increasing	M	 to	 whatever	 value	M	 would
attain	under	a	unit	increase	in	X.”

I	 am	 not	 sure	 if	 Melanie	 was	 impressed	 with	 my	 answer,	 but	 her
inquisitive	 student	 got	 me	 thinking,	 quite	 seriously,	 about	 how	 science
progresses	in	our	times.	Here	we	are,	I	thought,	forty	years	after	Blalock	and
Duncan	 introduced	path	analysis	 to	social	 science.	Dozens	of	 textbooks	and
hundreds	of	 research	papers	 are	published	every	year	on	direct	 and	 indirect
effects,	 some	 with	 oxymoronic	 titles	 like	 “Regression-Based	 Approach	 to
Mediation.”	 Each	 generation	 passes	 along	 to	 the	 next	 the	 received	wisdom
that	the	indirect	effect	is	just	the	product	of	two	other	effects,	or	the	difference
between	the	total	and	direct	effects.	Nobody	dares	to	ask	the	simple	question
“But	what	does	the	indirect	effect	mean	in	the	first	place?”	Just	like	the	boy	in
Hans	Christian	Andersen’s	 fable	 “The	Emperor’s	New	Clothes,”	we	needed
an	 innocent	 student	 with	 unabashed	 chutzpah	 to	 shatter	 our	 faith	 in	 the
oracular	role	of	scientific	consensus.

EMBRACE	THE	“WOULD-HAVES”

At	this	point	I	should	tell	my	own	conversion	story,	because	for	quite	a	while
I	was	stymied	by	the	same	question	that	puzzled	Melanie	Wall’s	student.

I	 wrote	 in	 Chapter	 4	 about	 Jamie	 Robins	 (Figure	 9.9),	 a	 pioneering
statistician	 and	 epidemiologist	 at	 Harvard	 University	 who,	 together	 with
Sander	 Greenland	 at	 the	 University	 of	 California,	 Los	 Angeles,	 is	 largely
responsible	for	the	widespread	adoption	of	graphical	models	in	epidemiology
today.	We	collaborated	for	a	couple	of	years,	from	1993	to	1995,	and	he	got
me	 thinking	 about	 the	 problem	 of	 sequential	 intervention	 plans,	which	was
one	of	his	principal	research	interests.



FIGURE	9.9.	Jamie	Robins,	a	pioneer	of	causal	inference	in	epidemiology.	(Source:

Photograph	by	Kris	Snibbe,	courtesy	of	Harvard	University	Photo	Services.)

Years	 earlier,	 as	 an	 expert	 in	occupational	 health	 and	 safety,	Robins	had
been	asked	to	testify	in	court	about	the	likelihood	that	chemical	exposure	in
the	workplace	had	caused	a	worker’s	death.	He	was	dismayed	to	discover	that
statisticians	and	epidemiologists	had	no	tools	to	answer	such	questions.	This
was	 still	 the	 era	 when	 causal	 language	was	 taboo	 in	 statistics.	 It	 was	 only
allowed	 in	 the	case	of	a	 randomized	controlled	 trial,	and	 for	ethical	 reasons
one	 could	 never	 conduct	 such	 a	 trial	 on	 the	 effects	 of	 exposure	 to
formaldehyde.

Usually	a	 factory	worker	 is	exposed	 to	a	harmful	chemical	not	 just	once
but	over	a	 long	period.	For	 that	 reason,	Robins	became	keenly	 interested	 in
exposures	 or	 treatments	 that	 vary	 over	 time.	 Such	 exposures	 can	 also	 be
beneficial:	 for	 example,	 AIDS	 treatment	 is	 given	 over	 the	 course	 of	 many
years,	with	different	plans	of	action	depending	on	how	a	patient’s	CD4	count
responds.	How	can	you	 sort	 out	 the	 causal	 effect	 of	 treatment	when	 it	may
occur	in	many	stages	and	the	intermediate	variables	(which	you	might	want	to
use	as	controls)	depend	on	earlier	stages	of	treatment?	This	has	been	one	of
the	defining	questions	of	Robins’s	career.

After	 Jamie	 flew	 out	 to	 California	 to	 meet	 me	 on	 hearing	 about	 the
“napkin	problem”	(Chapter	7),	he	was	keenly	interested	in	applying	graphical
methods	 to	 the	sequential	 treatment	plans	 that	were	his	métier.	Together	we



came	up	with	a	sequential	back-door	criterion	for	estimating	the	causal	effect
of	 such	 a	 treatment	 stream.	 I	 learned	 some	 important	 lessons	 from	 this
collaboration.	 In	 particular,	 he	 showed	 me	 that	 two	 actions	 are	 sometimes
easier	to	analyze	than	one	because	an	action	corresponds	to	erasing	arrows	on
a	graph,	which	makes	it	sparser.

Our	 back-door	 criterion	 dealt	 with	 a	 long-term	 treatment	 consisting	 of
some	arbitrarily	large	number	of	do-operations.	But	even	two	operations	will
produce	some	interesting	mathematics—including	the	controlled	direct	effect,
which	consists	of	one	action	that	“wiggles”	the	value	of	the	treatment,	while
another	action	fixes	the	value	of	the	mediator.	More	importantly,	the	idea	of
defining	 direct	 effects	 in	 terms	 of	 do-operations	 liberated	 them	 from	 the
confines	of	linear	models	and	grounded	them	in	causal	calculus.

But	I	didn’t	really	get	interested	in	mediation	until	later,	when	I	saw	that
people	were	still	making	elementary	mistakes,	such	as	the	Mediation	Fallacy
mentioned	earlier.	I	was	also	frustrated	that	the	action-based	definition	of	the
direct	effect	did	not	extend	 to	 the	 indirect	effect.	As	Melanie	Wall’s	student
said,	we	 have	 no	 variable	 or	 set	 of	 variables	 to	 intervene	 on	 to	 disable	 the
direct	 path	 and	 let	 the	 indirect	 path	 stay	 active.	 For	 this	 reason	 the	 indirect
effect	seemed	to	me	like	a	figment	of	the	imagination,	devoid	of	independent
meaning	except	 to	 remind	us	 that	 the	 total	effect	may	differ	 from	 the	direct
effect.	 I	 even	said	 so	 in	 the	 first	 edition	 (2000)	of	my	book	Causality.	 This
was	one	of	the	three	greatest	blunders	of	my	career.

In	retrospect,	I	was	blinded	by	the	success	of	the	do-calculus,	which	had
led	me	 to	 believe	 that	 the	 only	way	 to	 disable	 a	 causal	 path	was	 to	 take	 a
variable	 and	 set	 it	 to	one	particular	value.	This	 is	not	 so;	 if	 I	have	a	 causal
model,	I	can	manipulate	it	in	many	creative	ways,	by	dictating	who	listens	to
whom,	when,	 and	 how.	 In	 particular,	 I	 can	 fix	 the	 primary	 variable	 for	 the
purpose	of	suppressing	its	direct	effect	and,	hypothetically	yet	simultaneously,
energize	the	primary	variable	for	the	purpose	of	transmitting	its	effect	through
the	mediator.	 That	 allows	me	 to	 set	 the	 treatment	 variable	 (e.g.,	 kittens)	 at
zero	and	to	set	the	mediator	at	the	value	it	would	have	had	if	I	had	set	kittens
to	 one.	 My	 model	 of	 the	 data-generating	 process	 then	 tells	 me	 how	 to
compute	the	effect	of	the	split	intervention.

I	am	indebted	to	one	reader	of	the	first	edition,	Jacques	Hagenaars	(author
of	 Categorical	 Longitudinal	 Data),	 for	 urging	 me	 not	 to	 give	 up	 on	 the
indirect	effect.	“Many	experts	in	social	science	agree	on	the	input	and	output,
but	differ	exactly	with	respect	to	the	mechanism,”	he	wrote	to	me.	But	I	was
stuck	for	almost	 two	years	on	the	dilemma	I	wrote	about	 in	the	last	section:



How	can	I	disable	the	direct	effect?

All	 these	 struggles	 came	 to	 sudden	 resolution,	 almost	 like	 a	 divine
revelation,	 when	 I	 read	 the	 legal	 definition	 of	 discrimination	 that	 I	 quoted
earlier	 in	 this	 chapter:	 “had	 the	 employee	 been	 of	 a	 different	 race…	 and
everything	else	had	been	the	same.”	Here	we	have	it—the	crux	of	the	issue!
It’s	 a	make-believe	 game.	We	 deal	with	 each	 individual	 on	 his	 or	 her	 own
merits,	and	we	keep	all	characteristics	of	the	individual	constant	at	whatever
level	they	had	prior	to	the	change	in	the	treatment	variable.

How	does	 this	solve	our	dilemma?	It	means,	 first	of	all,	 that	we	have	 to
redefine	both	the	direct	effect	and	the	indirect	effect.	For	the	direct	effect,	we
let	the	mediator	choose	the	value	it	would	have—for	each	individual—in	the
absence	of	 treatment,	and	we	fix	 it	 there.	Now	we	wiggle	 the	 treatment	and
register	 the	 difference.	 This	 is	 different	 from	 the	 controlled	 direct	 effect	 I
discussed	 earlier,	 where	 the	 mediator	 is	 fixed	 at	 one	 value	 for	 everyone.
Because	we	let	the	mediator	choose	its	“natural”	value,	I	called	it	the	natural
direct	effect.	Similarly,	for	the	natural	indirect	effect	I	first	deny	treatment	to
everyone,	and	then	I	let	the	mediator	choose	the	value	it	would	have,	for	each
individual,	in	the	presence	of	treatment.	Finally	I	record	the	difference.

I	don’t	know	if	 the	legal	words	in	 the	definition	of	discrimination	would
have	 moved	 you,	 or	 anyone	 else,	 in	 the	 same	 way.	 But	 by	 2000	 I	 could
already	speak	counterfactuals	like	a	native.	Having	learned	how	to	read	them
in	causal	models,	I	realized	that	they	were	nothing	but	quantities	computed	by
innocent	operations	on	equations	or	diagrams.	As	such,	they	stood	ready	to	be
encapsulated	 in	 a	 mathematical	 formula.	 All	 I	 had	 to	 do	 was	 embrace	 the
“would-haves.”

In	 a	 second,	 I	 realized	 that	 every	 direct	 and	 indirect	 effect	 could	 be
translated	into	a	counterfactual	expression.	Once	I	saw	how	to	do	that,	it	was
a	snap	to	derive	a	formula	that	tells	you	how	to	estimate	the	natural	direct	and
indirect	effects	from	data	and	when	it	is	permissible.	Importantly,	the	formula
makes	no	assumptions	about	 the	specific	 functional	 form	of	 the	relationship
between	X,	M,	and	Y.	We	have	escaped	from	Linear	Wonderland.

I	called	the	new	rule	the	Mediation	Formula,	though	there	are	actually	two
formulas,	 one	 for	 the	 natural	 direct	 effect	 and	 one	 for	 the	 natural	 indirect
effect.	Subject	to	transparent	assumptions,	explicitly	displayed	in	the	graph,	it
tells	you	how	they	can	be	estimated	from	data.	For	example,	in	a	situation	like
Figure	9.4,	where	there	is	no	confounding	between	any	of	the	variables,	and
M	is	the	mediator	between	treatment	X	and	outcome	Y:



NIE	=	Σm	[P(M	=	m	|	X	=	1)–P(M	=	m	|	X	=	0)]	×	×	P(Y	=	1	|	X	=	0,	M	=
m)									(9.5)

The	interpretation	of	this	formula	is	illuminating.	The	expression	in	brackets
stands	for	 the	effect	of	X	on	M,	 and	 the	 following	expression	stands	 for	 the
effect	 of	M	 on	Y	 (when	X	 =	 0).	 So	 it	 reveals	 the	 origin	 of	 the	 product-of-
coefficients	 idea,	 cast	 as	 a	 product	 of	 two	 nonlinear	 effects.	 Note	 also	 that
unlike	Equation	9.3,	Equation	9.5	has	no	subscripts	and	no	do-operators,	so	it
can	be	estimated	from	rung-one	data.

Whether	you	are	a	scientist	in	a	laboratory	or	a	child	riding	a	bicycle,	it	is
always	 a	 thrill	 to	 find	 you	 can	 do	 something	 today	 that	 you	 could	 not	 do
yesterday.	And	that	is	how	I	felt	when	the	Mediation	Formula	first	appeared
on	paper.	I	could	see	at	a	glance	everything	about	direct	and	indirect	effects:
what	is	needed	to	make	them	large	or	small,	when	we	can	estimate	them	from
observational	 or	 interventional	 data,	 and	 when	 we	 can	 deem	 a	 mediator
“responsible”	for	transmitting	observed	changes	to	the	outcome	variable.	The
relationship	between	cause	and	effect	can	be	linear	or	nonlinear,	numerical	or
logical.	Previously	each	of	these	cases	had	to	be	handled	in	a	different	way,	if
they	were	discussed	at	all.	Now	a	single	formula	would	apply	to	all	of	them.
Given	the	right	data	and	the	right	model,	we	could	determine	if	an	employer
was	guilty	of	discrimination	or	what	kinds	of	confounders	would	prevent	us
from	 making	 that	 determination.	 From	 Barbara	 Burks’s	 data,	 we	 could
estimate	how	much	of	the	child’s	IQ	comes	from	nature	and	how	much	from
nurture.	We	could	even	calculate	the	percentage	of	the	total	effect	explained
by	 mediation	 and	 the	 percentage	 owed	 to	 mediation—two	 complementary
concepts	that	collapse	to	one	in	linear	models.

After	I	wrote	down	the	counterfactual	definition	of	the	direct	and	indirect
effects,	 I	 learned	 that	 I	 was	 not	 the	 first	 to	 hit	 on	 the	 idea.	 Robins	 and
Greenland	 got	 there	 before	 me,	 all	 the	 way	 back	 in	 1992.	 But	 their	 paper
describes	the	concept	of	the	natural	effect	in	words,	without	committing	it	to	a
mathematical	formula.

More	seriously,	they	took	a	pessimistic	view	of	the	whole	idea	of	natural
effects	 and	 stated	 that	 such	 effects	 cannot	 be	 estimated	 from	 experimental
studies	and	certainly	not	from	observational	studies.	This	statement	prevented
other	researchers	from	seeing	the	potential	of	natural	effects.	It	is	hard	to	tell
if	Robins	and	Greenland	would	have	switched	to	a	more	optimistic	view	had
they	 taken	 the	 extra	 step	 of	 expressing	 the	 natural	 effect	 as	 a	 formula	 in
counterfactual	language.	For	me,	this	extra	step	was	crucial.

There	is	possibly	another	reason	for	their	pessimistic	view,	which	I	do	not



agree	 with	 but	 will	 try	 to	 explain.	 They	 examined	 the	 counterfactual
definition	of	the	natural	effect	and	saw	that	it	combines	information	from	two
different	worlds,	 one	 in	which	 you	 hold	 the	 treatment	 constant	 at	 zero	 and
another	in	which	you	change	the	mediator	to	what	it	would	have	been	if	you
had	set	the	treatment	to	one.	Because	you	cannot	replicate	this	“cross-worlds”
condition	in	any	experiment,	they	believed	it	was	out	of	bounds.

This	 is	 a	 philosophical	 difference	 between	 their	 school	 and	mine.	 They
believe	that	the	legitimacy	of	causal	inference	lies	in	replicating	a	randomized
experiment	as	closely	as	possible,	on	the	assumption	that	this	is	the	only	route
to	 the	scientific	 truth.	I	believe	that	 there	may	be	other	routes,	which	derive
their	 legitimacy	 from	 a	 combination	 of	 data	 and	 established	 (or	 assumed)
scientific	knowledge.	To	that	end,	there	may	be	methods	more	powerful	than
a	 randomized	 experiment,	 based	 on	 rung-three	 assumptions,	 and	 I	 do	 not
hesitate	to	use	them.	Where	they	gave	researchers	a	red	light,	I	gave	them	a
green	light,	which	was	 the	Mediation	Formula:	 if	you	feel	comfortable	with
these	 assumptions,	 here	 is	 what	 you	 can	 do!	 Unfortunately,	 Robins	 and
Greenland’s	 red	 light	kept	 the	 field	of	mediation	at	 a	 standstill	 for	nine	 full
years.

Many	people	find	formulas	daunting,	seeing	them	as	a	way	of	concealing
rather	than	revealing	information.	But	to	a	mathematician,	or	to	a	person	who
is	adequately	trained	in	the	mathematical	way	of	thinking,	exactly	the	reverse
is	true.	A	formula	reveals	everything:	it	leaves	nothing	to	doubt	or	ambiguity.
When	reading	a	scientific	article,	I	often	catch	myself	jumping	from	formula
to	formula,	skipping	the	words	altogether.	To	me,	a	formula	is	a	baked	idea.
Words	are	ideas	in	the	oven.

A	 formula	 serves	 two	 purposes,	 one	 practical	 and	 one	 social.	 From	 the
practical	 point	 of	 view,	 students	 or	 colleagues	 can	 read	 it	 as	 they	 would	 a
recipe.	 The	 recipe	may	 be	 simple	 or	 complex,	 but	 at	 the	 end	 of	 the	 day	 it
promises	 that	 if	 you	 follow	 the	 steps,	 you	will	 know	 the	 natural	 direct	 and
indirect	 effects—provided,	 of	 course,	 your	 causal	model	 accurately	 reflects
the	real	world.

The	second	purpose	is	subtler.	I	had	a	friend	in	Israel	who	was	a	famous
artist.	 I	 visited	 his	 studio	 to	 acquire	 one	 of	 his	 paintings,	 and	 his	 canvases
were	all	over	the	place—a	hundred	under	the	bed,	dozens	in	the	kitchen.	They
were	priced	at	between	$300	and	$500	each,	and	I	had	a	hard	time	deciding.
Finally,	I	pointed	to	one	on	the	wall	and	said,	“I	like	this	one.”	“This	one	is
$5,000,”	he	said.	“How	come?”	I	asked,	partly	surprised	and	partly	protesting.
He	answered,	“This	one	 is	 framed.”	It	 took	me	a	few	minutes	 to	figure	out,



but	 then	 I	 understood	 what	 he	 meant.	 It	 wasn’t	 valuable	 because	 it	 was
framed;	 it	 was	 framed	 because	 it	 was	 valuable.	 Out	 of	 all	 the	 hundreds	 of
paintings	in	his	apartment,	that	one	was	his	personal	choice.	It	best	expressed
what	he	had	labored	to	express	in	the	others,	and	it	was	thus	anointed	with	a
seal	of	completeness—a	frame.

That	 is	 the	 second	purpose	of	a	 formula.	 It	 is	a	 social	contract.	 It	puts	a
frame	around	an	idea	and	says,	“This	is	something	I	believe	is	important.	This
is	something	that	deserves	sharing.”

That	is	why	I	have	chosen	to	put	a	frame	around	the	Mediation	Formula.	It
deserves	sharing	because,	to	me	and	many	like	me,	it	represents	the	end	to	an
age-old	 dilemma.	And	 it	 is	 important,	 because	 it	 offers	 a	 practical	 tool	 for
identifying	 mechanisms	 and	 assessing	 their	 importance.	 This	 is	 the	 social
promise	that	the	Mediation	Formula	expresses.

Since	 then,	 once	 the	 realization	 took	 hold	 that	 nonlinear	 mediation
analysis	is	possible,	research	in	the	field	has	taken	off.	If	you	go	to	a	database
of	academic	articles	and	search	for	titles	with	the	words	“mediation	analysis,”
you	will	 find	 almost	 nothing	 before	 2004.	 Then	 there	were	 seven	 papers	 a
year,	then	ten,	then	twenty;	now	there	are	more	than	a	hundred	papers	a	year.
I’d	like	to	end	this	chapter	with	 three	examples,	which	I	hope	will	 illustrate
the	variety	of	possibilities	of	mediation	analysis.

CASE	STUDIES	OF	MEDIATION

“Algebra	for	All”:	A	Program	and	Its	Side	Effects

Like	many	big-city	public	 school	 systems,	 the	Chicago	Public	Schools	 face
problems	 that	 sometimes	 seem	 intractable:	 high	 poverty	 rates,	 low	budgets,
and	big	achievement	gaps	between	black,	Latino,	white,	and	Asian	students.
In	 1988,	 then	 US	 secretary	 of	 education	William	 Bennett	 called	 Chicago’s
public	schools	the	worst	in	the	nation.

But	 in	 the	 1990s,	 under	 new	 leadership,	 the	 Chicago	 Public	 Schools
undertook	 a	 number	 of	 reforms	 and	 moved	 from	 “worst	 in	 the	 nation”	 to
“innovator	for	the	nation.”	Some	of	the	superintendents	responsible	for	these
changes	gained	nationwide	prominence,	 such	as	Arne	Duncan,	who	became
secretary	of	education	under	President	Barack	Obama.

One	 innovation	 that	 actually	 predated	 Duncan	 was	 a	 policy,	 adopted	 in
1997,	 eliminating	 remedial	 courses	 in	 high	 school	 and	 requiring	 all	 ninth



graders	 to	 take	college-prep	courses	 like	English	 I	and	Algebra	 I.	The	math
part	of	this	policy	was	called	“Algebra	for	All.”

Was	 “Algebra	 for	 All”	 a	 success?	 That	 question,	 it	 turned	 out,	 was
surprisingly	difficult	to	answer.	There	was	both	good	news	and	bad	news.	The
good	news	was	 that	 test	scores	did	 improve.	Math	scores	rose	by	7.8	points
over	 three	years,	a	statistically	significant	change	 that	 is	equivalent	 to	about
75	percent	of	students	scoring	above	the	mean	that	existed	before	the	policy
change.

But	before	we	can	talk	about	causality,	we	have	to	rule	out	confounders,
and	 in	 this	 case	 there	 is	 an	 important	 one.	 By	 1997,	 the	 qualifications	 of
incoming	 ninth-grade	 students	 were	 already	 improving	 thanks	 to	 earlier
changes	 in	 the	K–8	 curriculum.	So	we	 are	 not	 comparing	 apples	 to	 apples.
Because	these	children	began	ninth	grade	with	better	math	skills	than	students
had	 in	 1994,	 the	 higher	 scores	 could	 be	 due	 to	 the	 already	 instituted	 K–8
changes,	not	to	“Algebra	for	All.”

Guanglei	Hong,	 a	 professor	 of	 human	 development	 at	 the	University	 of
Chicago,	studied	the	data	and	found	no	significant	improvement	in	test	scores
once	this	confounder	was	taken	into	account.	At	this	point	it	would	have	been
easy	 for	 Hong	 to	 jump	 to	 the	 conclusion	 that	 “Algebra	 for	 All”	 was	 not	 a
success.	 But	 she	 didn’t,	 because	 there	 was	 another	 factor—this	 time	 a
mediator,	not	a	confounder—to	take	into	account.

As	any	good	 teacher	knows,	students’	success	depends	not	only	on	what
you	 teach	 them	 but	 on	 how	 you	 teach	 them.	When	 the	 “Algebra	 for	 All”
policy	 was	 introduced,	 more	 than	 the	 curriculum	 changed.	 The	 lower-
achieving	 students	 found	 themselves	 in	 classrooms	 with	 higher-achieving
students	and	could	not	keep	up.	This	led	to	all	sorts	of	negative	consequences:
discouragement,	 class	 cutting,	 and,	 of	 course,	 lower	 test	 scores.	 Also,	 in	 a
mixed-ability	 classroom,	 the	 low-achieving	 students	may	have	 received	 less
attention	from	their	teachers	than	they	would	have	in	a	remedial	class.	Finally,
the	teachers	themselves	may	have	struggled	with	the	new	demands	placed	on
them.	 The	 teachers	 experienced	 in	 teaching	 Algebra	 I	 probably	 were	 not
experienced	 in	 teaching	 low-ability	 students,	 and	 the	 teachers	 experienced
with	low-ability	students	may	not	have	been	as	qualified	to	teach	algebra.	All
of	 these	 were	 unanticipated	 side	 effects	 of	 “Algebra	 for	 All.”	 Mediation
analysis	is	ideally	suited	for	evaluating	the	influence	of	side	effects.

Hong	 hypothesized,	 therefore,	 that	 classroom	 environment	 had	 changed
and	had	strongly	affected	the	outcome	of	the	intervention.	In	other	words,	she
postulated	 the	 causal	 diagram	 shown	 in	 Figure	 9.10.	 Environment	 (which



Hong	measured	by	the	median	skill	level	of	all	the	students	in	the	classroom)
functions	 as	 a	mediator	 between	 the	 “Algebra	 for	All”	 intervention	 and	 the
students’	 learning	outcomes.	The	question,	as	usual	 in	mediation	analysis,	 is
how	much	of	the	effect	of	the	policy	was	direct	and	how	much	was	indirect.
Interestingly,	the	two	effects	worked	in	opposing	directions.	Hong	found	that
the	 direct	 effect	was	 positive:	 the	 new	policy	 directly	 led	 to	 a	 roughly	 2.7-
point	increase	in	test	scores.	This	was	at	least	a	change	in	the	right	direction,
and	it	was	statistically	significant	(meaning	that	such	an	improvement	would
be	 unlikely	 to	 happen	 by	 chance).	 However,	 because	 of	 the	 changes	 in
classroom	 environment,	 the	 indirect	 effect	 had	 almost	 completely	 cancelled
out	this	improvement,	reducing	test	scores	by	2.3	points.

FIGURE	9.10.	Causal	diagram	for	“Algebra	for	All”	experiment.

Hong	 concluded	 that	 the	 implementation	 of	 “Algebra	 for	 All”	 had
seriously	 undermined	 the	 policy.	 Maintaining	 the	 curricular	 change	 but
returning	 to	 the	 prepolicy	 classroom	environment	 should	 result	 in	 a	modest
increase	in	student	test	scores	(and	hopefully,	student	learning).

Serendipitously,	that	is	exactly	what	happened.	In	2003	the	Chicago	Public
Schools	 (now	 led	by	Duncan)	 instituted	 a	 new	 reform	called	 “Double-Dose
Algebra.”	 This	 reform	 would	 still	 require	 all	 students	 to	 take	 algebra,	 but
students	who	 scored	 below	 the	 national	median	 in	 eighth	 grade	would	 take
two	 classes	 of	 algebra	 a	 day	 instead	 of	 one.	 This	 repaired	 the	 adverse	 side
effect	 of	 the	 previous	 reform.	 Now,	 at	 least	 once	 a	 day,	 lower-achieving
students	got	a	classroom	environment	closer	 to	 the	one	 they	enjoyed	before
the	 “Algebra	 for	 All”	 reform.	 The	 “Double-Dose	 Algebra”	 reform	 was
generally	deemed	a	success	and	continues	to	this	day.

I	consider	the	story	of	“Algebra	for	All”	a	success	for	mediation	analysis
as	 well,	 because	 the	 analysis	 explains	 both	 the	 unimpressive	 results	 of	 the
original	 policy	 and	 the	 improved	 results	 under	 the	 modified	 policy.	 Even
though	causal	inference	came	along	too	late	to	affect	the	policy	in	real	time,	it
does	answer	our	“Why?”	questions	after	the	fact:	Why	did	the	original	reform
have	little	effect?	Why	did	the	second	reform	work	better?	In	this	way	it	can
guide	policy	for	the	future.

I	want	to	point	out	one	other	interesting	thing	about	Hong’s	work.	She	was
well	aware	of	the	Baron-Kenny	approach	to	direct	and	indirect	effects	that	I



have	called	 the	Linear	Wonderland.	 In	her	paper	she	actually	performed	 the
same	 analysis	 twice:	 once	 using	 a	 variation	 of	 the	Mediation	 Formula,	 the
other	 using	 the	 “conventional	 procedures”	 (her	 term)	 of	 Baron	 and	Kenny.
The	Baron-Kenny	method	 failed	 to	 detect	 the	 indirect	 effect.	 The	 reason	 is
most	 likely	 just	 what	 I	 discussed	 before:	 linear	 methods	 cannot	 spot
interactions	between	the	treatment	and	the	mediator.	Perhaps	the	combination
of	more	difficult	material	and	a	less	supportive	classroom	environment	caused
the	 low-achieving	students	 to	become	discouraged.	 Is	 this	plausible?	 I	 think
so.	Algebra	 is	a	hard	subject.	Perhaps	 its	difficulty	made	 the	extra	attention
from	the	teachers	under	the	double-dose	policy	that	much	more	valuable.

The	Smoking	Gene:	Mediation	and	Interaction

In	Chapter	5	I	wrote	about	the	scientific	and	political	war	over	smoking	in	the
1950s	 and	 1960s.	 The	 skeptics	 of	 that	 era,	 who	 included	 R.	 A.	 Fisher	 and
Jacob	Yerushalmy,	argued	that	the	apparent	link	between	smoking	and	cancer
might	 be	 a	 statistical	 artifact	 due	 to	 a	 confounding	 variable.	 Yerushalmy
thought	 in	 terms	 of	 a	 smoking	 personality	 type,	while	 Fisher	 suggested	 the
possibility	of	a	gene	that	would	predispose	people	both	toward	smoking	and
toward	developing	lung	cancer.

Ironically,	genomics	researchers	discovered	in	2008	that	Fisher	was	right:
there	is	a	“smoking	gene”	that	operates	exactly	in	the	way	he	suggested.	This
discovery	 came	 about	 through	 a	 new	 genomic	 analysis	 technique	 called	 a
genome-wide	association	study	(GWAS	for	short,	pronounced	“gee-wahss.”)
This	 is	 a	 prototypical	 “big-data”	 method	 that	 allows	 researchers	 to	 comb
through	the	whole	genome	statistically,	looking	for	genes	that	happen	to	show
up	 more	 often	 in	 people	 with	 a	 certain	 disease,	 such	 as	 diabetes	 or
schizophrenia	or	lung	cancer.

It	 is	 important	 to	notice	 the	word	“association”	 in	 the	 term	GWAS.	This
method	 does	 not	 prove	 causality;	 it	 only	 identifies	 genes	 associated	with	 a
certain	disease	in	the	given	sample.	It	is	a	data-driven	rather	than	hypothesis-
driven	method,	and	this	presents	problems	for	causal	inference.

Although	previous	 hypothesis-driven	gene	 studies	 had	 failed	 to	 find	 any
clear	evidence	of	genes	related	to	smoking	or	to	lung	cancer,	things	changed
overnight	 in	 2008.	 In	 that	 year	 researchers	 identified	 a	 gene	 located	 in	 a
region	of	 the	fifteenth	chromosome	that	codes	for	nicotine	receptors	 in	 lung
cells.	 It	 has	 an	 official	 name,	 rs16969968,	 but	 that	 is	 a	 mouthful	 even	 for
genomics	 experts.	 So	 they	 started	 calling	 it	 “the	 Big	 One”	 or	 “Mr.	 Big”
because	of	its	extremely	strong	association	with	lung	cancer.	“In	the	smoking



field,	if	you	say	Mr.	Big,	people	will	know	what	you	are	talking	about,”	says
Laura	Bierut,	a	smoking	expert	at	Washington	University	in	St.	Louis.	I’ll	just
call	it	the	smoking	gene.

At	this	point	I	think	I	hear	the	cantankerous	ghost	of	R.	A.	Fisher	rattling
his	chains	in	the	basement	and	demanding	a	retraction	of	all	the	things	I	wrote
in	Chapter	5.	Yes,	the	smoking	gene	is	associated	with	lung	cancer.	It	has	two
variants,	one	common	and	one	less	common.	People	who	inherit	 two	copies
of	the	less	common	variant	(about	one-ninth	of	the	population)	have	about	a
77	percent	greater	risk	of	getting	lung	cancer.	The	smoking	gene	also	seems
related	to	smoking	behavior.	People	who	have	the	risky	variant	seem	to	need
more	 nicotine	 to	 feel	 satisfied	 and	 have	more	 difficulty	 stopping.	However,
there	 is	 also	 some	 good	 news:	 these	 people	 respond	 better	 to	 nicotine
replacement	therapy	than	people	without	the	smoking	gene.

The	 discovery	 of	 the	 smoking	 gene	 should	 not	 change	 anybody’s	 mind
about	the	overwhelmingly	more	important	causal	factor	in	lung	cancer,	which
is	 smoking.	We	 know	 that	 smoking	 is	 associated	with	more	 than	 a	 tenfold
increase	in	the	risk	of	contracting	lung	cancer.	By	comparison,	even	a	double
dose	of	the	smoking	gene	less	than	doubles	your	risk.	This	is	serious	business,
no	doubt,	but	it	does	not	compare	to	the	danger	you	face	(for	no	good	reason)
if	you	are	a	regular	smoker.

FIGURE	9.11.	Causal	diagram	for	the	smoking	gene	example.

As	 always,	 it	 helps	 to	 visualize	 the	 discussion	 with	 a	 causal	 diagram.
Fisher	 thought	 of	 the	 (at	 that	 time	 purely	 hypothetical)	 smoking	 gene	 as	 a
confounder	of	 smoking	and	cancer	 (Figure	9.11).	But	 as	 a	 confounder,	 it	 is
not	nearly	strong	enough	to	account	for	the	overwhelmingly	strong	effect	of
smoking	 on	 the	 risk	 of	 lung	 cancer.	 This	 is,	 in	 essence,	 the	 argument	 that
Jerome	Cornfield	made	in	his	1959	paper	that	settled	the	argument	about	the
genetic	hypothesis.

We	can	easily	 rewrite	 the	same	causal	diagram	as	shown	 in	Figure	9.12.
When	we	 look	 at	 the	 diagram	 this	way,	we	 see	 that	 smoking	 behavior	 is	 a
mediator	 between	 the	 smoking	 gene	 and	 lung	 cancer.	 This	 tiny	 change	 in
perspective	 completely	 revamps	 the	 scientific	 debate.	 Instead	 of	 asking
whether	smoking	causes	cancer	(a	question	we	know	the	answer	to),	we	ask
instead	 how	 the	 gene	 works.	 Does	 it	 make	 people	 smoke	more	 and	 inhale



harder?	 Or	 does	 it	 somehow	 make	 lung	 cells	 more	 vulnerable	 to	 cancer?
Which	is	stronger,	the	indirect	effect	or	the	direct	effect?

The	answer	makes	a	difference	 for	 treatment.	 If	 the	effect	 is	direct,	 then
people	who	 have	 the	 high-risk	 gene	 should	 perhaps	 receive	 extra	 screening
for	lung	cancer.	On	the	other	hand,	if	the	effect	is	indirect,	smoking	behavior
becomes	crucial.	We	should	counsel	 such	patients	about	 their	 increased	 risk
and	the	importance	of	not	smoking	in	 the	first	place.	If	 they	already	smoke,
we	 may	 need	 to	 intervene	 more	 aggressively,	 perhaps	 with	 nicotine
replacement	therapy.

FIGURE	9.12.	Figure	9.11,	slightly	rearranged.

Tyler	VanderWeele,	an	epidemiologist	at	Harvard	University,	read	the	first
report	about	the	smoking	gene	in	Nature,	and	he	contacted	a	research	group	at
Harvard	 led	by	David	Christiani.	Since	1992,	Christiani	 had	 asked	his	 lung
cancer	patients,	as	well	as	 their	 friends	and	family,	 to	fill	out	questionnaires
and	provide	DNA	samples	 to	help	 the	 research	effort.	By	 the	mid-2000s	he
had	 collected	 data	 on	 1,800	 patients	 with	 cancer	 as	 well	 as	 1,400	 people
without	 lung	 cancer,	 who	 served	 as	 controls.	 The	 DNA	 samples	 were	 still
chilling	in	a	freezer	when	VanderWeele	called.

The	 results	 of	VanderWeele’s	 analysis	were	 surprising	 at	 first.	He	 found
that	the	increased	risk	of	lung	cancer	due	to	the	indirect	effect	was	only	1	to	3
percent.	The	people	with	 the	high-risk	variant	of	 the	gene	smoked	only	one
additional	cigarette	per	day	on	average,	which	was	not	enough	to	be	clinically
relevant.	However,	their	bodies	responded	differently	to	smoking.	The	effect
of	 the	 smoking	gene	on	 lung	 cancer	was	 large	 and	 significant,	 but	 only	 for
those	people	who	smoked.

This	poses	an	interesting	conundrum	in	reporting	the	results.	In	this	case,
CDE(0)	would	be	essentially	 zero:	 if	 you	don’t	 smoke,	 the	gene	won’t	hurt
you.	On	the	other	hand,	if	we	set	the	mediator	to	one	pack	a	day	or	two	packs
a	day,	which	I	would	denote	CDE(1)	or	CDE(2),	then	the	effect	of	the	gene	is
strong.	 The	 natural	 direct	 effect	 averages	 these	 controlled	 effects.	 So	 the
natural	direct	effect,	NDE,	is	positive,	and	that	is	how	VanderWeele	reported
it.

This	example	is	a	textbook	case	of	interaction.	In	the	end,	VanderWeele’s



analysis	proves	three	important	things	about	the	smoking	gene.	First,	it	does
not	 significantly	 increase	 cigarette	 consumption.	 Second,	 it	 does	 not	 cause
lung	cancer	through	a	smoking-independent	path.	Third,	for	those	people	who
do	 smoke,	 it	 significantly	 increases	 the	 risk	 of	 lung	 cancer.	 The	 interaction
between	the	gene	and	the	subject’s	behavior	is	everything.

As	 is	 the	 case	 with	 any	 new	 result,	 of	 course	more	 research	 is	 needed.
Bierut	 points	 out	 one	 problem	with	 VanderWeele	 and	 Christiani’s	 analysis:
they	 had	 only	 one	measure	 of	 smoking	 behavior—the	 number	 of	 cigarettes
per	day.	The	gene	could	possibly	cause	people	to	inhale	more	deeply	to	get	a
larger	dose	of	nicotine	per	puff.	The	Harvard	study	simply	didn’t	have	data	to
test	this	theory.

Even	 if	 some	 uncertainty	 remains,	 the	 research	 on	 the	 smoking	 gene
provides	 a	 glimpse	 into	 the	 future	 of	 personalized	medicine.	 It	 seems	 quite
clear	 that	 in	 this	 case	 the	 important	 thing	 is	 how	 the	 gene	 and	 behavior
interact.	We	still	don’t	know	for	sure	whether	the	gene	changes	behavior	(as
Bierut	suggests)	or	merely	interacts	with	behavior	that	would	have	happened
anyway	(as	VanderWeele’s	analysis	suggests).	Nevertheless,	we	may	be	able
to	 use	 genetic	 status	 to	 give	 people	 better	 information	 about	 the	 risks	 they
face.	 In	 the	 future,	 causal	models	 capable	 of	 detecting	 interactions	 between
genes	and	behavior	or	genes	and	environment	are	sure	to	be	an	important	tool
in	the	epidemiologist’s	kit.

Tourniquets:	A	Hidden	Fallacy

When	 John	 Kragh,	 an	 army	 surgeon,	 arrived	 for	 his	 first	 day	 of	 duty	 in	 a
Baghdad	hospital	 in	2006,	 he	 received	 an	 immediate	 awakening	 to	 the	new
realities	of	wartime	medicine.	Seeing	a	clipboard	with	the	current	day’s	cases,
he	 remarked	 to	 the	 nurse	 on	 duty,	 “Hey,	 that’s	 interesting—you’ve	 had	 an
emergency	tourniquet	used	during	your	shift.”

The	nurse	replied,	“That’s	not	interesting.	We	have	one	every	shift.”

In	his	first	five	minutes	on	the	job,	Kragh	had	stumbled	upon	a	sea	change
in	trauma	care	that	took	place	during	the	Iraq	and	Afghanistan	wars.	Though
used	 for	 centuries,	 both	 on	 the	 battlefield	 and	 in	 the	 operating	 room,
tourniquets	 have	 always	 been	 somewhat	 controversial.	 A	 tourniquet	 left	 on
too	 long	 will	 lead	 to	 loss	 of	 a	 limb.	 Also,	 tourniquets	 have	 often	 been
improvised	 under	 duress,	 from	 straps	 or	 other	 handy	 materials,	 so	 their
effectiveness	 is	 unsurprisingly	 a	 hit-or-miss	 affair.	After	World	War	 II	 they
were	 considered	 a	 treatment	 of	 last	 resort,	 and	 their	 use	 was	 officially
discouraged.



The	Iraq	and	Afghanistan	wars	radically	changed	that	policy.	Two	things
happened:	 more	 of	 the	 severe	 injuries	 required	 tourniquet	 use	 and	 better
tourniquet	designs	became	available.	In	2005,	the	surgeon	general	of	the	US
Army	 recommended	 that	 premanufactured	 tourniquets	 be	 provided	 to	 all
soldiers.	 By	 2006,	 as	 Kragh	 noted,	 the	 arrival	 of	 injured	 soldiers	 at	 the
hospital	with	a	tourniquet	around	an	arm	or	leg	was	an	everyday	occurrence
—a	situation	unprecedented	in	medical	history.

From	 2002	 to	 2012,	 Kragh	 estimates,	 tourniquets	 saved	 2,000	 military
lives.	 Soldiers	 on	 the	 front	 lines	 noticed.	 According	 to	 US	 Army	 surgeon
David	Welling,	“Combat	troops	are	reportedly	going	out	on	dangerous	patrol
missions	with	tourniquets	already	in	place	on	extremities,	as	they	wish	to	be
fully	 ready	 to	 respond	 to	 extremity	 bleeding,	 if	 and	 when	 the	 mine	 or	 the
improvised	explosive	devices	(IED)	should	go	off.”

Judging	 from	 the	 anecdotal	 evidence	 and	 the	 popularity	 of	 tourniquets
with	 frontline	 soldiers,	 their	 value	 should	 be	 beyond	 question	 by	 now.
However,	 few,	 if	 any,	 large-scale	 studies	 of	 tourniquet	 use	 had	 ever	 been
performed.	In	civilian	life,	the	kinds	of	injuries	that	necessitate	them	are	too
rare,	 and	 in	 military	 life	 the	 chaos	 of	 war	 makes	 it	 difficult	 to	 conduct	 a
proper	scientific	study.	But	Kragh	saw	the	opportunity	to	document	the	effects
of	their	use.	He	and	the	nurses	collected	data	on	every	case	that	came	through
the	hospital	doors,	and	the	former	 tourniquet	newbie	became	known	as	“the
tourniquet	guy.”

The	 study	 results,	 published	 in	 2015,	 were	 not	 what	 Kragh	 expected.
According	 to	 the	 data,	 the	 patients	 who	 had	 tourniquets	 applied	 before
arriving	at	the	hospital	did	not	survive	at	a	higher	rate	than	those	with	similar
injuries	 who	 had	 not	 received	 tourniquets.	 Of	 course,	 Kragh	 reasoned,	 the
ones	with	 tourniquets	 possibly	 had	more	 severe	 injuries	 to	 begin	with.	 But
even	when	he	controlled	for	this	factor	by	comparing	cases	of	equal	severity,
the	tourniquets	did	not	appear	to	improve	survival	rates	(see	Table	9.1).

TABLE	9.1.	Data	on	survival	with	and	without	tourniquets.



This	 is	 not	 a	 Simpson’s	 paradox	 situation.	 It	 doesn’t	matter	whether	we
aggregate	 the	data	or	stratify	 it;	 in	every	severity	category,	as	well	as	 in	 the
aggregate,	 survival	 was	 slightly	 greater	 for	 soldiers	 who	 did	 not	 get
tourniquets.	 (The	difference	 in	 survival	 rates	was,	 however,	 too	 small	 to	 be
statistically	significant.)

What	 went	 wrong?	 One	 possibility,	 of	 course,	 is	 that	 tourniquets	 aren’t
better.	Our	belief	in	them	could	be	a	case	of	confirmation	bias.	When	a	soldier
gets	 a	 tourniquet	 and	 survives,	 his	 doctors	 and	 his	 buddies	 will	 say,	 “That
tourniquet	 saved	 his	 life.”	 But	 if	 the	 soldier	 doesn’t	 get	 a	 tourniquet	 and
survives,	 nobody	will	 say,	 “Not	 putting	 on	 a	 tourniquet	 saved	 his	 life.”	 So
tourniquets	might	get	more	credit	than	their	due,	and	nonintervention	doesn’t
get	any	credit.

But	 there	 was	 another	 possible	 bias	 in	 this	 study,	 which	 Kragh	 himself
pointed	out:	 the	 doctors	 only	 collected	 data	 on	 those	 soldiers	who	 survived
long	enough	to	get	to	the	hospital	in	the	first	place.	To	see	why	this	matters,
let’s	draw	a	causal	diagram	(Figure	9.13).

FIGURE	9.13.	Causal	diagram	for	tourniquet	example.	The	dashed	line	is	a

hypothetical	causal	effect	(not	supported	by	the	data).

In	this	figure,	we	can	see	that	Injury	Severity	is	a	confounder	of	all	three
variables,	 the	 treatment	 (Tourniquet	 Use),	 the	 mediator	 (Pre-Admission
Survival),	 and	 the	 outcome	 (Post-Admission	 Survival).	 It	 is	 therefore
appropriate	and	necessary	to	condition	on	Injury	Severity,	as	Kragh	did	in	his
paper.

However,	because	Kragh	studied	only	 the	patients	who	actually	survived
long	enough	to	get	to	the	hospital,	he	was	also	conditioning	on	the	mediator,
Pre-Admission	 Survival.	 In	 effect,	 he	 was	 blocking	 the	 indirect	 path	 from
tourniquet	use	to	post-admission	survival,	and	therefore	he	was	computing	the
direct	 effect,	 indicated	by	 the	dashed	 arrow	 in	Figure	9.13.	That	 effect	was
essentially	 zero.	 Nevertheless,	 there	 still	 could	 be	 an	 indirect	 effect.	 If
tourniquets	 enabled	more	 soldiers	 to	 survive	 until	 they	 got	 to	 the	 hospital,
then	the	tourniquet	would	be	a	very	favorable	intervention.	This	would	mean
that	 the	 job	of	a	 tourniquet	 is	 to	get	 the	patient	 to	 the	hospital	alive;	once	it



has	done	that,	it	has	no	further	value.	Unfortunately,	nothing	in	the	data	(Table
9.1)	can	either	confirm	or	refute	this	hypothesis.

William	Kruskal	once	lamented	that	 there	is	no	Homer	to	sing	the	praise
of	statisticians.	I	would	like	to	sing	the	praise	of	Kragh,	who	under	the	most
adverse	 conditions	 imaginable	had	 the	presence	of	mind	 to	 collect	data	 and
subject	 the	 standard	 treatment	 to	 a	 scientific	 test.	His	 example	 is	 a	 shining
light	 for	 anyone	 who	 wants	 to	 practice	 evidence-based	 medicine.	 It’s	 a
particularly	bitter	 irony	 that	 his	 study	 could	not	 succeed	because	he	had	no
way	 to	 collect	 data	 on	 soldiers	who	didn’t	 survive	 to	 the	 hospital.	We	may
wish	 that	he	could	have	proved	once	and	 for	all	 that	 tourniquets	 save	 lives.
Kragh	 himself	 wrote	 in	 an	 email,	 “I	 have	 no	 doubt	 that	 tourniquets	 are	 a
desirable	 intervention.”	 But	 in	 the	 end	 he	 had	 to	 report	 a	 “null	 result,”	 the
kind	 that	 doesn’t	 make	 headlines.	 Even	 so,	 he	 deserves	 credit	 for	 sound
scientific	instincts.
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BIG	DATA,	ARTIFICIAL	INTELLIGENCE,
AND	THE	BIG	QUESTIONS

All	is	pre-determined,	yet	permission	is	always	granted.

—MAIMONIDES	(MOSHE	BEN	MAIMON)	(1138–1204)

WHEN	I	began	my	journey	into	causation,	I	was	following	the	tracks	of	an
anomaly.	With	Bayesian	networks,	we	had	taught	machines	to	think	in	shades
of	gray,	 and	 this	was	 an	 important	 step	 toward	humanlike	 thinking.	But	we
still	 couldn’t	 teach	machines	 to	 understand	 causes	 and	 effects.	We	 couldn’t
explain	to	a	computer	why	turning	the	dial	of	a	barometer	won’t	cause	rain.
Nor	 could	we	 teach	 it	what	 to	 expect	when	one	 of	 the	 riflemen	on	 a	 firing
squad	 changes	 his	 mind	 and	 decides	 not	 to	 shoot.	 Without	 the	 ability	 to
envision	 alternate	 realities	 and	 contrast	 them	 with	 the	 currently	 existing
reality,	a	machine	cannot	pass	the	mini-Turing	test;	it	cannot	answer	the	most
basic	 question	 that	 makes	 us	 human:	 “Why?”	 I	 took	 this	 as	 an	 anomaly
because	 I	 did	 not	 anticipate	 such	 natural	 and	 intuitive	 questions	 to	 reside
beyond	the	reach	of	the	most	advanced	reasoning	systems	of	the	time.

Only	later	did	I	realize	that	the	same	anomaly	was	afflicting	more	than	just
the	field	of	artificial	 intelligence	(AI).	The	very	people	who	should	care	 the
most	 about	 “Why?”	 questions—namely,	 scientists—were	 laboring	 under	 a
statistical	culture	that	denied	them	the	right	to	ask	those	questions.	Of	course
they	 asked	 them	 anyway,	 informally,	 but	 they	 had	 to	 cast	 them	 as
associational	 questions	 whenever	 they	 wanted	 to	 subject	 them	 to
mathematical	analysis.



The	 pursuit	 of	 this	 anomaly	 brought	 me	 into	 contact	 with	 people	 in	 a
variety	 of	 fields,	 like	 Clark	 Glymour	 and	 his	 team	 (Richard	 Scheines	 and
Peter	Spirtes)	from	philosophy,	Joseph	Halpern	from	computer	science,	Jamie
Robins	 and	 Sander	 Greenland	 from	 epidemiology,	 Chris	 Winship	 from
sociology,	 and	 Don	 Rubin	 and	 Philip	 Dawid	 from	 statistics,	 who	 were
thinking	 about	 the	 same	 problem.	 Together	 we	 lit	 the	 spark	 of	 a	 Causal
Revolution,	which	has	spread	like	a	chain	of	firecrackers	from	one	discipline
to	 the	 next:	 epidemiology,	 psychology,	 genetics,	 ecology,	 geology,	 climate
science,	 and	 so	 on.	 With	 every	 passing	 year	 I	 see	 a	 greater	 and	 greater
willingness	among	scientists	to	speak	and	write	about	causes	and	effects,	not
with	apologies	and	downcast	 eyes	but	with	confidence	and	assertiveness.	A
new	paradigm	has	evolved	according	to	which	it	is	okay	to	base	your	claims
on	assumptions	as	long	as	you	make	your	assumptions	transparent	so	that	you
and	others	can	judge	how	plausible	they	are	and	how	sensitive	your	claims	are
to	their	violation.	The	Causal	Revolution	has	perhaps	not	led	to	any	particular
gadget	 that	 has	 changed	 our	 lives,	 but	 it	 has	 led	 to	 a	 transformation	 in
attitudes	that	will	inevitably	lead	to	healthier	science.

I	often	think	of	this	transformation	as	“the	second	gift	of	AI	to	humanity,”
and	 it	has	been	our	main	 focus	 in	 this	book.	But	as	we	bring	 the	 story	 to	a
conclusion,	it	is	time	for	us	to	go	back	and	inquire	about	the	first	gift,	which
has	taken	an	unexpectedly	long	time	to	materialize.	Are	we	in	fact	getting	any
closer	 to	 the	 day	 when	 computers	 or	 robots	 can	 understand	 causal
conversations?	Can	we	make	artificial	intelligences	with	as	much	imagination
as	 a	 three-year-old	 human?	 I	 share	 some	 thoughts,	 but	 give	 no	 definitive
conclusions,	in	this	final	chapter.

CAUSAL	MODELS	AND	“BIG	DATA”

Throughout	 science,	 business,	 government,	 and	 even	 sports,	 the	 amount	 of
raw	data	we	have	 about	 our	world	 has	 grown	 at	 a	 staggering	 rate	 in	 recent
years.	The	change	is	perhaps	most	visible	to	those	of	us	who	use	the	Internet
and	social	media.	 In	2014,	 the	 last	year	 for	which	 I’ve	seen	data,	Facebook
reportedly	was	warehousing	300	petabytes	of	 data	 about	 its	 2	billion	 active
users,	or	150	megabytes	of	data	per	user.	The	games	people	play,	the	products
they	 like	 to	 buy,	 the	 names	 of	 all	 their	 Facebook	 friends,	 and	 of	 course	 all
their	 cat	 videos—all	 of	 them	 are	 out	 there	 in	 a	 glorious	 ocean	 of	 ones	 and
zeros.

Less	 obvious	 to	 the	 public,	 but	 just	 as	 important,	 is	 the	 rise	 of	 huge



databases	 in	science.	For	example,	 the	1000	Genomes	Project	collected	 two
hundred	terabytes	of	information	in	what	it	calls	“the	largest	public	catalogue
of	human	variation	and	genotype	data.”	NASA’s	Mikulski	Archive	for	Space
Telescopes	 has	 collected	 2.5	 petabytes	 of	 data	 from	 several	 deep-space
surveys.	 But	 Big	Data	 hasn’t	 only	 affected	 high-profile	 sciences;	 it’s	made
inroads	 into	every	science.	A	generation	ago,	a	marine	biologist	might	have
spent	months	 doing	 a	 census	 of	 his	 or	 her	 favorite	 species.	 Now	 the	 same
biologist	has	immediate	access	online	to	millions	of	data	points	on	fish,	eggs,
stomach	 contents,	 or	 anything	 else	 he	 or	 she	wants.	 Instead	 of	 just	 doing	 a
census,	the	biologist	can	tell	a	story.

Most	 relevant	 for	 us	 is	 the	 question	 of	 what	 comes	 next.	 How	 do	 we
extract	meaning	 from	 all	 these	 numbers,	 bits,	 and	 pixels?	The	 data	may	 be
immense,	but	the	questions	we	ask	are	simple.	Is	there	a	gene	that	causes	lung
cancer?	What	kinds	of	solar	systems	are	 likely	 to	harbor	Earth-like	planets?
What	factors	are	causing	the	population	of	our	favorite	fish	to	decrease,	and
what	can	we	do	about	it?

In	 certain	 circles	 there	 is	 an	 almost	 religious	 faith	 that	 we	 can	 find	 the
answers	to	these	questions	in	the	data	itself,	if	only	we	are	sufficiently	clever
at	 data	 mining.	 However,	 readers	 of	 this	 book	 will	 know	 that	 this	 hype	 is
likely	 to	 be	misguided.	 The	 questions	 I	 have	 just	 asked	 are	 all	 causal,	 and
causal	questions	can	never	be	answered	from	data	alone.	They	require	us	 to
formulate	 a	 model	 of	 the	 process	 that	 generates	 the	 data,	 or	 at	 least	 some
aspects	of	that	process.	Anytime	you	see	a	paper	or	a	study	that	analyzes	the
data	in	a	model-free	way,	you	can	be	certain	that	the	output	of	the	study	will
merely	summarize,	and	perhaps	transform,	but	not	interpret	the	data.

This	 is	not	 to	say	that	data	mining	is	useless.	 It	may	be	an	essential	 first
step	 to	 search	 for	 interesting	 patterns	 of	 association	 and	 pose	more	 precise
interpretive	questions.	Instead	of	asking,	“Are	there	any	lung-cancer-causing
genes?”	 we	 can	 now	 start	 scanning	 the	 genome	 for	 genes	 with	 a	 high
correlation	 with	 lung	 cancer	 (such	 as	 the	 “Mr.	 Big”	 gene	 mentioned	 in
Chapter	 9).	 Then	 we	 can	 ask,	 “Does	 this	 gene	 cause	 lung	 cancer?	 (And
how?)”	We	never	could	have	asked	about	 the	“Mr.	Big”	gene	 if	we	did	not
have	 data	mining.	 To	 get	 any	 farther,	 though,	we	 need	 to	 develop	 a	 causal
model	specifying	(for	example)	what	variables	we	think	the	gene	affects,	what
confounders	might	exist,	and	what	other	causal	pathways	might	bring	about
the	result.	Data	interpretation	means	hypothesizing	on	how	things	operate	in
the	real	world.

Another	role	of	Big	Data	in	causal	inference	problems	lies	in	the	last	stage



of	the	inference	engine	described	in	the	Introduction	(step	8),	which	takes	us
from	 the	 estimand	 to	 the	 estimate.	 This	 step	 of	 statistical	 estimation	 is	 not
trivial	when	the	number	of	variables	 is	 large,	and	only	big-data	and	modern
machine-learning	 techniques	 can	 help	 us	 to	 overcome	 the	 curse	 of
dimensionality.	 Likewise,	 Big	 Data	 and	 causal	 inference	 together	 play	 a
crucial	role	in	the	emerging	area	of	personalized	medicine.	Here,	we	seek	to
make	inferences	from	the	past	behavior	of	a	set	of	individuals	who	are	similar
in	 as	many	 characteristics	 as	 possible	 to	 the	 individual	 in	 question.	 Causal
inference	permits	us	to	screen	off	the	irrelevant	characteristics	and	to	recruit
these	 individuals	 from	 diverse	 studies,	 while	 Big	 Data	 allows	 us	 to	 gather
enough	information	about	them.

It’s	 easy	 to	 understand	 why	 some	 people	 would	 see	 data	mining	 as	 the
finish	 rather	 than	 the	 first	 step.	 It	 promises	 a	 solution	 using	 available
technology.	 It	 saves	 us,	 as	 well	 as	 future	machines,	 the	 work	 of	 having	 to
consider	and	articulate	substantive	assumptions	about	how	the	world	operates.
In	some	fields	our	knowledge	may	be	in	such	an	embryonic	state	that	we	have
no	clue	how	 to	begin	drawing	a	model	of	 the	world.	But	Big	Data	will	 not
solve	 this	problem.	The	most	 important	part	of	 the	answer	must	come	 from
such	 a	 model,	 whether	 sketched	 by	 us	 or	 hypothesized	 and	 fine-tuned	 by
machines.

Lest	I	seem	too	critical	of	the	big-data	enterprise,	I	would	like	to	mention
one	 new	opportunity	 for	 symbiosis	 between	Big	Data	 and	 causal	 inference.
This	is	called	transportability.

Thanks	 to	 Big	 Data,	 not	 only	 can	 we	 access	 an	 enormous	 number	 of
individuals	in	any	given	study,	but	we	can	also	access	an	enormous	number	of
studies,	conducted	in	different	locations	and	under	different	conditions.	Often
we	want	 to	 combine	 the	 results	 of	 these	 studies	 and	 translate	 them	 to	 new
populations	that	may	be	different	even	in	ways	we	have	not	anticipated.

The	process	of	translating	the	results	of	a	study	from	one	setting	to	another
is	 fundamental	 to	 science.	 In	 fact,	 scientific	 progress	would	 grind	 to	 a	 halt
were	it	not	for	the	ability	to	generalize	results	from	laboratory	experiments	to
the	real	world—for	example,	from	test	tubes	to	animals	to	humans.	But	until
recently	each	science	had	to	develop	its	own	criteria	for	sorting	out	valid	from
invalid	 generalizations,	 and	 there	 have	 been	 no	 systematic	 methods	 for
addressing	“transportability”	in	general.

Within	 the	 last	 five	 years,	 my	 former	 student	 (now	 colleague)	 Elias
Bareinboim	and	I	have	succeeded	in	giving	a	complete	criterion	for	deciding
when	 results	 are	 transportable	and	when	 they	are	not.	As	usual,	 the	proviso



for	using	 this	 criterion	 is	 that	you	 represent	 the	 salient	 features	of	 the	data-
generating	process	with	a	causal	diagram,	marked	with	locations	of	potential
disparities.	“Transporting”	a	result	does	not	necessarily	mean	taking	it	at	face
value	 and	 applying	 it	 to	 the	 new	 environment.	 The	 researcher	may	 have	 to
recalibrate	it	to	allow	for	disparities	between	the	two	environments.

Suppose	we	want	to	know	the	effect	of	an	online	advertisement	(X)	on	the
likelihood	 that	 a	 consumer	will	 purchase	 the	 product	 (Y)—say,	 a	 surfboard.
We	have	data	from	studies	in	five	different	places:	Los	Angeles,	Boston,	San
Francisco,	Toronto,	and	Honolulu.	Now	we	want	to	estimate	how	effective	the
advertisement	will	be	 in	Arkansas.	Unfortunately,	 each	population	and	each
study	 differs	 slightly.	 For	 example,	 the	 Los	 Angeles	 population	 is	 younger
than	our	target	population,	and	the	San	Francisco	population	differs	in	click-
through	rate.	Figure	10.1	shows	the	unique	characteristics	of	each	population
and	 each	 study.	Can	we	 combine	 the	 data	 from	 these	 remote	 and	 disparate
studies	 to	estimate	the	ad’s	effectiveness	 in	Arkansas?	Can	we	do	it	without
taking	any	data	in	Arkansas?	Or	perhaps	by	measuring	merely	a	small	set	of
variables	or	conducting	a	pilot	observational	study?

FIGURE	10.1.	The	transportability	problem.

Figure	10.2	translates	these	differences	into	graphical	form.	The	variable	Z
represents	age,	which	 is	a	confounder;	young	people	may	be	more	 likely	 to
see	 the	ad	and	more	 likely	 to	buy	the	product	even	 if	 they	don’t	see	 the	ad.
The	variable	W	represents	clicking	on	a	link	to	get	more	information.	This	is	a
mediator,	 a	 step	 that	 must	 take	 place	 in	 order	 to	 convert	 “seeing	 the
advertisement”	 into	 “buying	 the	product.”	The	 letter	S,	 in	 each	 case,	 stands
for	 a	 “difference-producing”	 variable,	 a	 hypothetical	 variable	 that	 points	 to
the	 characteristic	 by	which	 the	 two	 populations	 differ.	 For	 example,	 in	Los
Angeles	 (b),	 the	 indicator	S	 points	 to	Z,	 age.	 In	 each	 of	 the	 other	 cities	 the
indicator	points	 to	 the	distinguishing	 feature	of	 the	population	mentioned	 in
Figure	10.1.



FIGURE	10.2.	Differences	between	the	studied	populations,	expressed	in	graphical

form.

For	 the	 advertising	 agency,	 the	 good	 news	 is	 that	 a	 computer	 can	 now
manage	 this	 complicated	 “data	 fusion”	 problem	 and,	 guided	 by	 the	 do-
calculus,	 tell	us	which	studies	we	can	use	 to	answer	our	query	and	by	what
means,	as	well	as	what	information	we	need	to	collect	in	Arkansas	to	support
the	conclusion.	In	some	cases	the	effect	may	transport	directly,	with	no	further
work	and	without	our	even	setting	foot	in	Arkansas.	For	example,	 the	effect
of	the	ad	in	Arkansas	should	be	the	same	as	in	Boston,	because	according	to
the	diagram,	Boston	(c)	differs	from	Arkansas	only	in	 the	variable	V,	which
does	not	affect	either	treatment	X	or	outcome	Y.

We	need	to	reweight	the	data	in	some	of	the	other	studies—for	instance,	to
account	 for	 the	different	 age	 structure	of	 the	population	 in	 the	Los	Angeles
study	(b).	Interestingly,	the	experimental	study	in	Toronto	(e)	is	sufficient	for
estimating	our	query	 in	Arkansas	despite	 the	disparity	 at	W,	 if	we	can	only
measure	X,	W,	and	Y	in	Arkansas.

Remarkably,	 we	 have	 found	 examples	 in	 which	 no	 transport	 is	 feasible
from	any	one	of	 the	available	studies;	yet	 the	 target	quantity	 is	nevertheless



estimable	 from	 their	 combination.	 Also,	 even	 studies	 that	 are	 not
transportable	 are	 not	 entirely	 useless.	 Take,	 for	 example,	 the	 Honolulu	 (f)
study	in	Figure	10.2,	which	is	not	transportable	due	to	the	arrow	S	 	Y.	The
arrow	X	 	W,	on	 the	other	hand,	 is	not	contaminated	by	S,	and	so	 the	data
available	from	Honolulu	can	be	used	to	estimate	P(W	|	X).	By	combining	this
with	estimates	of	P(W	|	X)	from	other	studies,	we	can	increase	the	precision	of
this	subexpression.	By	carefully	combining	such	subexpressions,	we	may	be
able	to	synthesize	an	accurate	overall	estimate	of	the	target	quantity.

Although	in	simple	cases	these	results	are	intuitively	reasonable,	when	the
diagrams	get	more	 complicated,	we	need	 the	help	of	 a	 formal	method.	The
do-calculus	 provides	 a	 general	 criterion	 for	 determining	 transportability	 in
such	cases.	The	rule	is	quite	simple:	 if	you	can	perform	a	valid	sequence	of
do-operations	 (using	 the	 rules	 from	 Chapter	 7)	 that	 transforms	 the	 target
quantity	into	another	expression	in	which	any	factor	involving	S	is	free	of	do-
operators,	 then	 the	 estimate	 is	 transportable.	 The	 logic	 is	 simple;	 any	 such
factor	 can	 be	 estimated	 from	 the	 available	 data,	 uncontaminated	 by	 the
disparity	factor	S.

Elias	Bareinboim	 has	managed	 to	 do	 the	 same	 thing	 for	 the	 problem	of
transportability	that	Ilya	Shpitser	did	for	the	problem	of	interventions.	He	has
developed	an	algorithm	that	can	automatically	determine	for	you	whether	the
effect	you	are	seeking	is	transportable,	using	graphical	criteria	alone.	In	other
words,	 it	 can	 tell	 you	 whether	 the	 required	 separation	 of	 S	 from	 the	 do-
operators	can	be	accomplished	or	not.

Bareinboim’s	results	are	exciting	because	they	change	what	was	formerly
seen	as	a	threat	to	validity	into	an	opportunity	to	leverage	the	many	studies	in
which	 participation	 cannot	 be	 mandated	 and	 where	 we	 therefore	 cannot
guarantee	 that	 the	 study	population	would	be	 the	 same	as	 the	population	of
interest.	Instead	of	seeing	the	difference	between	populations	as	a	threat	to	the
“external	 validity”	of	 a	 study,	we	now	have	 a	methodology	 for	 establishing
validity	in	situations	that	would	have	appeared	hopeless	before.	It	is	precisely
because	we	live	in	the	era	of	Big	Data	that	we	have	access	to	information	on
many	studies	and	on	many	of	the	auxiliary	variables	(like	Z	and	W)	that	will
allow	us	to	transport	results	from	one	population	to	another.

I	 will	 mention	 in	 passing	 that	 Bareinboim	 has	 also	 proved	 analogous
results	 for	 another	 problem	 that	 has	 long	 bedeviled	 statisticians:	 selection
bias.	This	 kind	 of	 bias	 occurs	when	 the	 sample	 group	 being	 studied	 differs
from	 the	 target	 population	 in	 some	 relevant	way.	This	 sounds	 a	 lot	 like	 the
transportability	 problem—and	 it	 is,	 except	 for	 one	 very	 important



modification:	instead	of	drawing	an	arrow	from	the	indicator	variable	S	to	the
affected	variable,	we	draw	the	arrow	toward	S.	We	can	think	of	S	as	standing
for	 “selection”	 (into	 the	 study).	 For	 example,	 if	 our	 study	 observes	 only
hospitalized	 patients,	 as	 in	 the	 Berkson	 bias	 example,	 we	 would	 draw	 an
arrow	from	Hospitalization	 to	S,	 indicating	 that	hospitalization	 is	a	cause	of
selection	for	our	study.	In	Chapter	6	we	saw	this	situation	only	as	a	threat	to
the	validity	of	our	study.	But	now,	we	can	look	at	it	as	an	opportunity.	If	we
understand	the	mechanism	by	which	we	recruit	subjects	for	the	study,	we	can
recover	 from	 bias	 by	 collecting	 data	 on	 the	 right	 set	 of	 deconfounders	 and
using	an	appropriate	 reweighting	or	adjustment	 formula.	Bareinboim’s	work
allows	us	to	exploit	causal	logic	and	Big	Data	to	perform	miracles	that	were
previously	inconceivable.

Words	like	“miracles”	and	“inconceivable”	are	rare	in	scientific	discourse,
and	 the	 reader	may	wonder	 if	 I	 am	being	a	 little	 too	enthusiastic.	But	 I	use
them	 for	 a	 good	 reason.	 The	 concept	 of	 external	 validity	 as	 a	 threat	 to
experimental	 science	has	 been	 around	 for	 at	 least	 half	 a	 century,	 ever	 since
Donald	Campbell	and	Julian	Stanley	recognized	and	defined	the	term	in	1963.
I	 have	 talked	 to	dozens	of	 experts	 and	prominent	 authors	who	have	written
about	this	topic.	To	my	amazement,	not	one	of	them	was	able	to	tackle	any	of
the	toy	problems	presented	in	Figure	10.2.	I	call	them	“toy	problems”	because
they	are	easy	to	describe,	easy	to	solve,	and	easy	to	verify	if	a	given	solution
is	correct.

At	 present,	 the	 culture	 of	 “external	 validity”	 is	 totally	 preoccupied	with
listing	and	categorizing	the	threats	to	validity	rather	than	fighting	them.	It	 is
in	fact	so	paralyzed	by	threats	that	it	looks	with	suspicion	and	disbelief	on	the
very	 idea	 that	 threats	 can	 be	 disarmed.	 The	 experts,	 who	 are	 novices	 to
graphical	models,	find	it	easier	to	configure	additional	threats	than	to	attempt
to	remedy	any	one	of	them.	Language	like	“miracles,”	so	I	hope,	should	jolt
my	colleagues	into	looking	at	such	problems	as	intellectual	challenges	rather
than	reasons	for	despair.

I	 wish	 that	 I	 could	 present	 the	 reader	 with	 successful	 case	 studies	 of	 a
complex	 transportability	 task	 and	 recovery	 from	 selection	 bias,	 but	 the
techniques	are	still	too	new	to	have	penetrated	into	general	usage.	I	am	very
confident,	 though,	 that	 researchers	will	 discover	 the	power	of	Bareinboim’s
algorithms	before	long,	and	then	external	validity,	like	confounding	before	it,
will	cease	to	have	its	mystical	and	terrifying	power.

STRONG	AI	AND	FREE	WILL



The	 ink	 was	 scarcely	 dry	 on	 Alan	 Turing’s	 great	 paper,	 “Computing
Machinery	 and	 Intelligence,”	when	 science	 fiction	writers	 and	 futurologists
began	 toying	 with	 the	 prospect	 of	 machines	 that	 think.	 Sometimes	 they
envisioned	 these	machines	 as	benign	or	 even	noble	 figures,	 like	 the	whirry,
chirpy	 R2D2	 and	 the	 oddly	 British	 android	 C3PO	 from	 Star	 Wars.	 Other
times	 the	 machines	 are	 much	 more	 sinister,	 plotting	 the	 destruction	 of	 the
human	species,	as	in	the	Terminator	movies,	or	enslaving	humans	in	a	virtual
reality,	as	in	The	Matrix.

In	all	these	cases,	the	AIs	say	more	about	the	anxieties	of	the	writers	or	the
capabilities	 of	 the	 movie’s	 special	 effects	 department	 than	 they	 do	 about
actual	artificial	 intelligence	research.	Artificial	 intelligence	has	turned	out	to
be	 a	 more	 elusive	 goal	 than	 Turing	 ever	 suspected,	 even	 though	 the	 sheer
computational	 power	 of	 our	 computers	 has	 no	 doubt	 exceeded	 his
expectations.

In	Chapter	3	I	wrote	about	some	of	the	reasons	for	this	slow	progress.	In
the	1970s	and	early	1980s,	artificial	intelligence	research	was	hampered	by	its
focus	 on	 rule-based	 systems.	 But	 rule-based	 systems	 proved	 to	 be	 on	 the
wrong	 track.	 They	 were	 very	 brittle.	 Any	 slight	 change	 to	 their	 working
assumptions	 required	 that	 they	be	 rewritten.	They	 could	not	 cope	well	with
uncertainty	 or	 with	 contradictory	 data.	 Finally,	 they	 were	 not	 scientifically
transparent;	you	could	not	prove	mathematically	that	they	would	behave	in	a
certain	way,	and	you	could	not	pinpoint	exactly	what	needed	repair	when	they
didn’t.	Not	all	AI	researchers	objected	to	the	lack	of	transparency.	The	field	at
the	 time	 was	 divided	 into	 “neats”	 (who	 wanted	 transparent	 systems	 with
guarantees	 of	 behavior)	 and	 “scruffies”	 (who	 just	 wanted	 something	 that
worked).	I	was	always	a	“neat.”

I	was	 lucky	to	come	along	at	a	 time	when	the	field	was	ready	for	a	new
approach.	Bayesian	networks	were	probabilistic;	they	could	cope	with	a	world
full	 of	 conflicting	 and	 uncertain	 data.	 Unlike	 the	 rule-based	 systems,	 they
were	modular	 and	 easily	 implemented	on	 a	distributed	 computing	platform,
which	made	 them	 fast.	Finally,	 as	was	 important	 to	me	 (and	other	 “neats”),
Bayesian	 networks	 dealt	 with	 probabilities	 in	 a	mathematically	 sound	way.
This	guaranteed	that	if	anything	went	wrong,	the	bug	was	in	the	program,	not
in	our	thinking.

Even	 with	 all	 these	 advantages,	 Bayesian	 networks	 still	 could	 not
understand	causes	and	effects.	By	design,	in	a	Bayesian	network,	information
flows	in	both	directions,	causal	and	diagnostic:	smoke	increases	the	likelihood
of	fire,	and	fire	increases	the	likelihood	of	smoke.	In	fact,	a	Bayesian	network



can’t	even	tell	what	 the	“causal	direction”	is.	The	pursuit	of	 this	anomaly—
this	wonderful	 anomaly,	 as	 it	 turned	 out—drew	me	 away	 from	 the	 field	 of
machine	 learning	 and	 toward	 the	 study	 of	 causation.	 I	 could	 not	 reconcile
myself	to	the	idea	that	future	robots	would	not	be	able	to	communicate	with
us	 in	our	native	 language	of	cause	and	effect.	Once	 in	causality	 land,	 I	was
naturally	 drawn	 toward	 the	 vast	 spectrum	 of	 other	 sciences	 where	 causal
asymmetry	is	of	the	utmost	importance.

So,	for	the	past	twenty-five	years,	I	have	been	somewhat	of	an	expatriate
from	 the	 land	 of	 automated	 reasoning	 and	 machine	 learning.	 Nevertheless,
from	my	distant	vantage	point	I	can	still	see	the	current	trends	and	fashions.

In	recent	years,	the	most	remarkable	progress	in	AI	has	taken	place	in	an
area	 called	 “deep	 learning,”	 which	 uses	 methods	 like	 convolutional	 neural
networks.	These	networks	do	not	follow	the	rules	of	probability;	they	do	not
deal	 with	 uncertainty	 in	 a	 rigorous	 or	 transparent	 way.	 Still	 less	 do	 they
incorporate	 any	 explicit	 representation	 of	 the	 environment	 in	 which	 they
operate.	 Instead,	 the	 architecture	of	 the	network	 is	 left	 free	 to	 evolve	on	 its
own.	 When	 finished	 training	 a	 new	 network,	 the	 programmer	 has	 no	 idea
what	computations	it	is	performing	or	why	they	work.	If	the	network	fails,	she
has	no	idea	how	to	fix	it.

Perhaps	 the	 prototypical	 example	 is	 AlphaGo,	 a	 convolutional	 neural-
network-based	program	that	plays	 the	ancient	Asian	game	of	Go,	developed
by	 DeepMind,	 a	 subsidiary	 of	 Google.	 Among	 human	 games	 of	 perfect
information,	Go	had	always	been	considered	the	toughest	nut	for	AI.	Though
computers	 conquered	 humans	 in	 chess	 in	 1997,	 they	were	 not	 considered	 a
match	even	for	the	lowest-level	professional	Go	players	as	recently	as	2015.
The	Go	community	thought	that	computers	were	still	a	decade	or	more	away
from	giving	humans	a	real	battle.

That	 changed	 almost	 overnight	 with	 the	 advent	 of	 AlphaGo.	 Most	 Go
players	first	heard	about	the	program	in	late	2015,	when	it	trounced	a	human
professional	 5–0.	 In	 March	 2016,	 AlphaGo	 defeated	 Lee	 Sedol,	 for	 years
considered	 the	 strongest	 human	 player,	 4–1.	 A	 few	 months	 later	 it	 played
sixty	online	games	against	top	human	players	without	losing	a	single	one,	and
in	2017	it	was	officially	retired	after	beating	the	current	world	champion,	Ke
Jie.	The	one	game	it	lost	to	Sedol	is	the	only	one	it	will	ever	lose	to	a	human.

All	of	this	is	exciting,	and	the	results	leave	no	doubt:	deep	learning	works
for	 certain	 tasks.	 But	 it	 is	 the	 antithesis	 of	 transparency.	 Even	 AlphaGo’s
programmers	cannot	tell	you	why	the	program	plays	so	well.	They	knew	from
experience	 that	 deep	 networks	 have	 been	 successful	 at	 tasks	 in	 computer



vision	 and	 speech	 recognition.	 Nevertheless,	 our	 understanding	 of	 deep
learning	is	completely	empirical	and	comes	with	no	guarantees.	The	AlphaGo
team	could	not	have	predicted	at	 the	outset	 that	 the	program	would	beat	 the
best	human	in	a	year,	or	two,	or	five.	They	simply	experimented,	and	it	did.

Some	people	will	argue	that	transparency	is	not	really	needed.	We	do	not
understand	in	detail	how	the	human	brain	works,	and	yet	it	runs	well,	and	we
forgive	 our	 meager	 understanding.	 So,	 they	 argue,	 why	 not	 unleash	 deep-
learning	systems	and	create	a	new	kind	of	intelligence	without	understanding
how	it	works?	I	cannot	say	they	are	wrong.	The	“scruffies,”	at	this	moment	in
time,	have	taken	the	lead.	Nevertheless,	I	can	say	that	I	personally	don’t	like
opaque	systems,	and	that	is	why	I	do	not	choose	to	do	research	on	them.

My	personal	taste	aside,	there	is	another	factor	to	add	to	this	analogy	with
the	 human	brain.	Yes,	we	 forgive	 our	meager	 understanding	of	 how	human
brains	 work,	 but	 we	 can	 still	 communicate	 with	 other	 humans,	 learn	 from
them,	instruct	them,	and	motivate	them	in	our	own	native	language	of	cause
and	 effect.	We	 can	 do	 that	 because	 our	 brains	 work	 the	 same	 way.	 If	 our
robots	 will	 all	 be	 as	 opaque	 as	 AlphaGo,	 we	 will	 not	 be	 able	 to	 hold	 a
meaningful	conversation	with	them,	and	that	would	be	quite	unfortunate.

When	my	house	robot	turns	on	the	vacuum	cleaner	while	I	am	still	asleep
(Figure	10.3)	 and	 I	 tell	 it,	 “You	 shouldn’t	 have	woken	me	up,”	 I	want	 it	 to
understand	that	the	vacuuming	was	at	fault,	but	I	don’t	want	it	to	interpret	the
complaint	 as	 an	 instruction	 never	 to	 vacuum	 the	 upstairs	 again.	 It	 should
understand	what	you	and	I	perfectly	understand:	vacuum	cleaners	make	noise,
noise	wakes	people	up,	and	that	makes	some	people	unhappy.	In	other	words,
our	 robot	 will	 have	 to	 understand	 cause-and-effect	 relations—in	 fact,
counterfactual	relations,	such	as	those	encoded	in	the	phrase	“You	shouldn’t
have.”

Indeed,	observe	the	rich	content	of	this	short	sentence	of	instructions.	We
should	 not	 need	 to	 tell	 the	 robot	 that	 the	 same	 applies	 to	 vacuum	 cleaning
downstairs	or	anywhere	else	in	the	house,	but	not	when	I	am	awake	or	not	at
home,	when	the	vacuum	cleaner	is	equipped	with	a	silencer,	and	so	forth.	Can
a	deep-learning	program	understand	 the	 richness	of	 this	 instruction?	That	 is
why	 I	 am	 not	 satisfied	 with	 the	 apparently	 superb	 performance	 of	 opaque
systems.	Transparency	enables	effective	communication.



FIGURE	10.3.	A	smart	robot	contemplating	the	causal	ramifications	of	his/her	actions.

(Source:	Drawing	by	Maayan	Harel.)

One	aspect	of	deep	learning	does	interest	me:	the	theoretical	limitations	of
these	 systems,	 primarily	 limitations	 that	 stem	 from	 their	 inability	 to	 go
beyond	rung	one	of	the	Ladder	of	Causation.	This	limitation	does	not	hinder
the	 performance	 of	 AlphaGo	 in	 the	 narrow	 world	 of	 go	 games,	 since	 the
board	description	together	with	the	rules	of	the	game	constitutes	an	adequate
causal	model	of	the	go-world.	Yet	it	hinders	learning	systems	that	operate	in
environments	 governed	 by	 rich	webs	 of	 causal	 forces,	 while	 having	 access
merely	 to	 surface	 manifestations	 of	 those	 forces.	 Medicine,	 economics,
education,	 climatology,	 and	 social	 affairs	 are	 typical	 examples	 of	 such
environments.	 Like	 the	 prisoners	 in	 Plato’s	 famous	 cave,	 deep-learning
systems	explore	the	shadows	on	the	cave	wall	and	learn	to	accurately	predict
their	movements.	They	lack	the	understanding	that	the	observed	shadows	are
mere	projections	of	three-dimensional	objects	moving	in	a	three-dimensional
space.	Strong	AI	requires	this	understanding.

Deep-learning	researchers	are	not	unaware	of	 these	basic	limitations.	For
example,	economists	using	machine	learning	have	noted	that	their	methods	do
not	answer	key	questions	of	interest,	such	as	estimating	the	impact	of	untried



policies	and	actions.	Typical	examples	are	introducing	new	price	structures	or
subsidies	 or	 changing	 the	 minimum	 wage.	 In	 technical	 terms,	 machine-
learning	methods	today	provide	us	with	an	efficient	way	of	going	from	finite
sample	 estimates	 to	 probability	 distributions,	 and	we	 still	 need	 to	 get	 from
distributions	to	cause-effect	relations.

When	we	start	talking	about	strong	AI,	causal	models	move	from	a	luxury
to	a	necessity.	To	me,	a	strong	AI	should	be	a	machine	that	can	reflect	on	its
actions	 and	 learn	 from	 past	 mistakes.	 It	 should	 be	 able	 to	 understand	 the
statement	 “I	 should	have	acted	differently,”	whether	 it	 is	 told	as	much	by	a
human	or	arrives	at	that	conclusion	itself.	The	counterfactual	interpretation	of
this	statement	reads,	“I	have	done	X	=	x,	and	the	outcome	was	Y	=	y.	But	if	I
had	acted	differently,	 say	X	 =	x′,	 then	 the	 outcome	would	 have	 been	better,
perhaps	Y	 =	 y′.”	As	we	 have	 seen,	 the	 estimation	 of	 such	 probabilities	 has
been	 completely	 automated,	 given	 enough	 data	 and	 an	 adequately	 specified
causal	model.

In	 fact,	 I	 think	 that	 a	 very	 important	 target	 for	 machine	 learning	 is	 the
simpler	 probability	P(YX	 =	 x1	 =	y′	 |	X	 =	 x),	 where	 the	machine	 observes	 an
event	X	=	x	but	not	 the	outcome	Y,	and	 then	asks	for	 the	outcome	under	an
alternative	event	X	=	x′.	If	it	can	compute	this	quantity,	the	machine	can	treat
its	intended	action	as	an	observed	event	(X	=	x)	and	ask,	“What	if	I	change	my
mind	and	do	X	=	x′	 instead?”	This	expression	is	mathematically	the	same	as
the	effect	of	treatment	on	the	treated	(mentioned	in	Chapter	8),	and	we	have
lots	of	results	indicating	how	to	estimate	it.

Intent	 is	 a	 very	 important	 part	 of	 personal	 decision	making.	 If	 a	 former
smoker	feels	himself	tempted	to	light	up	a	cigarette,	he	should	think	very	hard
about	 the	 reasons	 behind	 that	 intention	 and	 ask	 whether	 a	 contrary	 action
might	in	fact	 lead	to	a	better	outcome.	The	ability	to	conceive	of	one’s	own
intent	and	then	use	it	as	a	piece	of	evidence	in	causal	reasoning	is	a	level	of
self-awareness	(if	not	consciousness)	that	no	machine	I	know	of	has	achieved.
I	 would	 like	 to	 be	 able	 to	 lead	 a	machine	 into	 temptation	 and	 have	 it	 say,
“No.”

Any	discussion	of	 intent	 leads	 to	another	major	 issue	 for	strong	AI:	 free
will.	If	we	are	asking	a	machine	to	have	the	intent	to	do	X	=	x,	become	aware
of	 it,	 and	choose	 to	do	X	=	x′	 instead,	we	seem	 to	be	asking	 it	 to	have	 free
will.	But	how	can	a	robot	have	free	will	if	it	just	follows	instructions	stored	in
its	program?

Berkeley	 philosopher	 John	 Searle	 has	 labeled	 the	 free	 will	 problem	 “a
scandal	in	philosophy,”	partly	due	to	the	zero	progress	made	on	the	problem



since	antiquity	and	partly	because	we	cannot	brush	it	off	as	an	optical	illusion.
Our	 entire	 conception	 of	 “self”	 presupposes	 that	 we	 have	 such	 a	 thing	 as
choices.	 For	 example,	 there	 seems	 to	 be	 no	 way	 to	 reconcile	 my	 vivid,
unmistakable	sensation	of	having	an	option	(say,	to	touch	or	not	to	touch	my
nose)	with	my	understanding	of	reality	that	presupposes	causal	determinism:
all	 our	 actions	 are	 triggered	by	electrical	neural	 signals	 emanating	 from	 the
brain.

While	 many	 philosophical	 problems	 have	 disappeared	 over	 time	 in	 the
light	of	scientific	progress,	free	will	remains	stubbornly	enigmatic,	as	fresh	as
it	 appeared	 to	Aristotle	 and	Maimonides.	Moreover,	while	 human	 free	will
has	 sometimes	 been	 justified	 on	 spiritual	 or	 theological	 grounds,	 these
explanations	would	not	apply	to	a	programmed	machine.	So	any	appearance
of	 robotic	 free	 will	 must	 be	 a	 gimmick—at	 least	 this	 is	 the	 conventional
dogma.

Not	all	philosophers	are	convinced	that	there	really	is	a	clash	between	free
will	and	determinism.	A	group	called	“compatibilists,”	among	whom	I	count
myself,	consider	it	only	an	apparent	clash	between	two	levels	of	description:
the	 neural	 level	 at	 which	 processes	 appear	 deterministic	 (barring	 quantum
indeterminism)	and	the	cognitive	level	at	which	we	have	a	vivid	sensation	of
options.	Such	apparent	clashes	are	not	infrequent	in	science.	For	example,	the
equations	 of	 physics	 are	 time	 reversible	 on	 a	microscopic	 level,	 yet	 appear
irreversible	 on	 the	macroscopic	 level	 of	 description;	 the	 smoke	never	 flows
back	 into	 the	 chimney.	But	 that	 opens	 up	 new	 questions:	Granted	 that	 free
will	is	(or	may	be)	an	illusion,	why	is	it	so	important	to	us	as	humans	to	have
this	 illusion?	 Why	 did	 evolution	 labor	 to	 endow	 us	 with	 this	 conception?
Gimmick	 or	 no	 gimmick,	 should	 we	 program	 the	 next	 generation	 of
computers	to	have	this	illusion?	What	for?	What	computational	benefits	does
it	entail?

I	think	that	understanding	the	benefits	of	the	illusion	of	free	will	is	the	key
to	the	stubbornly	enigmatic	problem	of	reconciling	it	with	determinism.	The
problem	will	dissolve	before	our	eyes	once	we	endow	a	deterministic	machine
with	the	same	benefits.

Together	with	 this	 functional	 issue,	we	must	also	cope	with	questions	of
simulation.	 If	 neural	 signals	 from	 the	 brain	 trigger	 all	 our	 actions,	 then	 our
brains	must	be	fairly	busy	decorating	some	actions	with	the	title	“willed”	or
“intentional”	and	others	with	“unintentional.”	What	precisely	is	this	labeling
process?	What	neural	path	would	earn	a	given	signal	the	label	“willed”?

In	many	cases,	voluntary	actions	are	 recognized	by	a	 trace	 they	 leave	 in



short-term	 memory,	 with	 the	 trace	 reflecting	 a	 purpose	 or	 motivation.	 For
example,	 “Why	did	 you	do	 it?”	 “Because	 I	wanted	 to	 impress	 you.”	Or,	 as
Eve	innocently	answered,	“The	serpent	deceived	me,	and	I	ate.”	But	in	many
other	cases	an	intentional	action	is	taken,	and	yet	no	reason	or	motives	come
to	 mind.	 Rationalization	 of	 actions	 may	 be	 a	 reconstructive,	 post-action
process.	For	example,	a	soccer	player	may	explain	why	he	decided	to	pass	the
ball	 to	 Joe	 instead	 of	 Charlie,	 but	 it	 is	 rarely	 the	 case	 that	 those	 reasons
consciously	triggered	the	action.	In	the	heat	of	the	game,	thousands	of	input
signals	 compete	 for	 the	 player’s	 attention.	 The	 crucial	 decision	 is	 which
signals	to	prioritize,	and	the	reasons	can	hardly	be	recalled	and	articulated.

AI	 researchers	 are	 therefore	 trying	 to	 answer	 two	 questions—about
function	 and	 simulation—with	 the	 first	 driving	 the	 second.	 Once	 we
understand	what	computational	function	free	will	serves	in	our	lives,	then	we
can	 attend	 to	 equipping	 machines	 with	 such	 functions.	 It	 becomes	 an
engineering	problem,	albeit	a	hard	one.

To	me,	 certain	 aspects	 of	 the	 functional	 question	 stand	 out	 clearly.	 The
illusion	 of	 free	 will	 gives	 us	 the	 ability	 to	 speak	 about	 our	 intents	 and	 to
subject	 them	 to	 rational	 thinking,	possibly	using	counterfactual	 logic.	When
the	coach	pulls	us	out	of	a	soccer	game	and	says,	“You	should	have	passed	the
ball	to	Charlie,”	consider	all	the	complex	meanings	embedded	in	these	eight
words.

First,	the	purpose	of	such	a	“should	have”	instruction	is	to	swiftly	transmit
valuable	information	from	the	coach	to	the	player:	in	the	future,	when	faced
with	a	similar	situation,	choose	action	B	rather	than	action	A.	But	the	“similar
situations”	 are	 far	 too	 numerous	 to	 list	 and	 are	 hardly	 known	 even	 to	 the
coach	himself.	Instead	of	listing	the	features	of	these	“similar	situations,”	the
coach	 points	 to	 the	 player’s	 action,	 which	 is	 representative	 of	 his	 intent	 at
decision	time.	By	proclaiming	the	action	inadequate,	 the	coach	is	asking	the
player	to	identify	the	software	packages	that	led	to	his	decision	and	then	reset
priorities	 among	 those	 packages	 so	 that	 “pass	 to	 Charlie”	 becomes	 the
preferred	action.	There	is	profound	wisdom	in	this	instruction	because	who,	if
not	the	player	himself,	would	know	the	identities	of	those	packages?	They	are
nameless	neural	paths	that	cannot	be	referenced	by	the	coach	or	any	external
observer.	 Asking	 the	 player	 to	 take	 an	 action	 different	 from	 the	 one	 taken
amounts	to	encouraging	an	intent-specific	analysis,	like	the	one	we	mentioned
above.	Thinking	in	terms	of	intents,	therefore,	offers	us	a	shorthand	to	convert
complicated	causal	instructions	into	simple	ones.

I	would	conjecture,	then,	that	a	team	of	robots	would	play	better	soccer	if



they	were	 programmed	 to	 communicate	 as	 if	 they	 had	 free	will.	No	matter
how	 technically	 proficient	 the	 individual	 robots	 are	 at	 soccer,	 their	 team’s
performance	will	improve	when	they	can	speak	to	each	other	as	if	they	are	not
preprogrammed	robots	but	autonomous	agents	believing	they	have	options.

Although	it	remains	to	be	seen	whether	the	illusion	of	free	will	enhances
robot-to-robot	communication,	there	is	much	less	uncertainty	about	robot-to-
human	 communication.	 In	 order	 to	 communicate	 naturally	 with	 humans,
strong	AIs	will	 certainly	 need	 to	 understand	 the	 vocabulary	 of	 options	 and
intents,	 and	 thus	 they	 will	 need	 to	 emulate	 the	 illusion	 of	 free	 will.	 As	 I
explained	above,	they	may	also	find	it	advantageous	to	“believe”	in	their	own
free	will	themselves,	to	the	extent	of	being	able	to	observe	their	intent	and	act
differently.

The	ability	to	reason	about	one’s	own	beliefs,	intents,	and	desires	has	been
a	 major	 challenge	 to	 AI	 researchers	 and	 defines	 the	 notion	 of	 “agency.”
Philosophers,	 on	 the	 other	 hand,	 have	 studied	 these	 abilities	 as	 part	 of	 the
classical	 question	 of	 consciousness.	Questions	 such	 as	 “Can	machines	 have
consciousness?”	or	“What	makes	a	software	agent	different	from	an	ordinary
program?”	have	engaged	the	best	minds	of	many	generations,	and	I	would	not
pretend	 to	 answer	 them	 in	 full.	 I	 believe,	 nevertheless,	 that	 the
algorithmization	of	counterfactuals	is	a	major	step	toward	understanding	these
questions	and	making	consciousness	and	agency	a	computational	reality.	The
methods	described	for	equipping	a	machine	with	a	symbolic	representation	of
its	environment	and	the	capacity	to	imagine	a	hypothetical	perturbation	of	that
environment	 can	 be	 extended	 to	 include	 the	 machine	 itself	 as	 part	 of	 the
environment.	No	machine	can	process	a	complete	copy	of	 its	own	software,
but	it	can	have	a	blueprint	summary	of	its	major	software	components.	Other
components	 can	 then	 reason	 about	 that	 blueprint	 and	mimic	 a	 state	 of	 self-
awareness.

To	 create	 the	 perception	 of	 agency,	 we	 must	 also	 equip	 this	 software
package	with	a	memory	to	record	past	activations,	to	which	it	can	refer	when
asked,	 “Why	 did	 you	 do	 that?”	 Actions	 that	 pass	 certain	 patterns	 of	 path
activation	 will	 receive	 reasoned	 explanations,	 such	 as	 “Because	 the
alternative	 proved	 less	 attractive.”	 Others	 will	 end	 up	 with	 evasive	 and
useless	answers,	such	as	“I	wish	I	knew	why”	or	“Because	that’s	the	way	you
programmed	me.”

In	summary,	 I	believe	 that	 the	software	package	 that	can	give	a	 thinking
machine	the	benefits	of	agency	would	consist	of	at	least	three	parts:	a	causal
model	of	the	world;	a	causal	model	of	its	own	software,	however	superficial;



and	a	memory	that	records	how	intents	in	its	mind	correspond	to	events	in	the
outside	world.

This	may	 even	 be	 how	 our	 own	 causal	 education	 as	 infants	 begins.	We
may	have	something	like	an	“intention	generator”	in	our	minds,	which	tells	us
that	we	are	supposed	to	take	action	X	=	x.	But	children	love	to	experiment—to
defy	 their	parents’,	 their	 teachers’,	 even	 their	own	 initial	 intentions—and	 to
something	different,	just	for	fun.	Fully	aware	that	we	are	supposed	to	do	X	=
x,	we	playfully	do	X	=	x′	instead.	We	watch	what	happens,	repeat	the	process,
and	keep	a	record	of	how	good	our	 intention	generator	 is.	Finally,	when	we
start	 to	 adjust	 our	 own	 software,	 that	 is	 when	 we	 begin	 to	 take	 moral
responsibility	 for	 our	 actions.	 This	 responsibility	may	 be	 an	 illusion	 at	 the
level	of	neural	activation	but	not	at	the	level	of	self-awareness	software.

Encouraged	 by	 these	 possibilities,	 I	 believe	 that	 strong	 AI	 with	 causal
understanding	and	agency	capabilities	is	a	realizable	promise,	and	this	raises
the	 question	 that	 science	 fiction	 writers	 have	 been	 asking	 since	 the	 1950s:
Should	we	be	worried?	Is	strong	AI	a	Pandora’s	box	that	we	should	not	open?

Recently	public	figures	like	Elon	Musk	and	Stephen	Hawking	have	gone
on	record	saying	that	we	should	be	worried.	On	Twitter,	Musk	said	that	AIs
were	 “potentially	 more	 dangerous	 than	 nukes.”	 In	 2015,	 John	 Brockman’s
website	Edge.org	posed	as	its	annual	question,	that	year	asking,	“What	do	you
think	 about	 machines	 that	 think?”	 It	 drew	 186	 thoughtful	 and	 provocative
answers	 (since	 collected	 into	 a	 book	 titled	What	 to	 Think	 About	Machines
That	Think).

Brockman’s	 intentionally	 vague	 question	 can	 be	 subdivided	 into	 at	 least
five	related	ones:

1.	Have	we	already	made	machines	that	think?

2.	Can	we	make	machines	that	think?

3.	Will	we	make	machines	that	think?

4.	Should	we	make	machines	that	think?

And	finally,	the	unstated	question	that	lies	at	the	heart	of	our	anxieties:

5.	Can	we	make	machines	that	are	capable	of	distinguishing	good
from	evil?

The	answer	to	the	first	question	is	no,	but	I	believe	that	the	answer	to	all	of
the	others	is	yes.	We	certainly	have	not	yet	made	machines	that	think	in	any
humanlike	 interpretation	 of	 the	 word.	 So	 far	 we	 can	 only	 simulate	 human



thinking	in	narrowly	defined	domains	that	have	only	the	most	primitive	causal
structures.	There	we	can	actually	make	machines	that	outperform	humans,	but
this	 should	be	no	 surprise	 because	 these	domains	 reward	 the	one	 thing	 that
computers	do	well:	compute.

The	 answer	 to	 the	 second	 question	 is	 almost	 certainly	 yes,	 if	we	 define
thinking	as	being	able	to	pass	the	Turing	test.	I	say	that	on	the	basis	of	what
we	have	learned	from	the	mini-Turing	test.	The	ability	to	answer	queries	at	all
three	 levels	 of	 the	 Ladder	 of	 Causation	 provides	 the	 seeds	 of	 “agency”
software	so	that	the	machine	can	think	about	its	own	intentions	and	reflect	on
its	 own	 mistakes.	 The	 algorithms	 for	 answering	 causal	 and	 counterfactual
queries	already	exist	(thanks	in	large	part	to	my	students),	and	they	are	only
waiting	for	industrious	AI	researchers	to	implement	them.

The	third	question	depends,	of	course,	on	human	events	 that	are	difficult
to	 predict.	 But	 historically,	 humans	 have	 seldom	 refrained	 from	making	 or
doing	things	that	they	are	technologically	capable	of.	Partly	this	is	because	we
do	not	know	we	are	technologically	capable	of	something	until	we	actually	do
it,	 whether	 it’s	 cloning	 animals	 or	 sending	 astronauts	 to	 the	 moon.	 The
detonation	of	 the	 atomic	bomb,	however,	was	 a	 turning	point:	many	people
think	this	technology	should	not	have	been	developed.

Since	World	War	 II,	 a	 good	 example	of	 scientists	 pulling	back	 from	 the
feasible	 was	 the	 1975	Asilomar	 conference	 on	DNA	 recombination,	 a	 new
technology	seen	by	the	media	in	somewhat	apocalyptic	terms.	The	scientists
working	 in	 the	 field	managed	 to	 come	 to	 a	 consensus	on	good-sense	 safety
practices,	 and	 the	 agreement	 they	 reached	 then	 has	 held	 up	 well	 over	 the
ensuing	 four	 decades.	 Recombinant	 DNA	 is	 now	 a	 common,	 mature
technology.

In	 2017,	 the	 Future	 of	 Life	 Institute	 convened	 a	 similar	 Asilomar
conference	 on	 artificial	 intelligence	 and	 agreed	 on	 a	 set	 of	 twenty-three
principles	for	future	research	in	“beneficial	AI.”	While	most	of	the	guidelines
are	not	relevant	to	the	topics	discussed	in	this	book,	the	recommendations	on
ethics	 and	 values	 are	 definitely	 worthy	 of	 attention.	 For	 example,
recommendations	6,	“AI	systems	should	be	safe	and	secure	throughout	their
operational	lifetime,	and	verifiably	so,”	and	7,	“If	an	AI	system	causes	harm,
it	 should	 be	 possible	 to	 ascertain	 why,”	 clearly	 speak	 to	 the	 importance	 of
transparency.	Recommendation	 10,	 “Highly	 autonomous	AI	 systems	 should
be	 designed	 so	 that	 their	 goals	 and	 behaviors	 can	 be	 assured	 to	 align	with
human	values	throughout	their	operation,”	is	rather	vague	as	stated	but	could
be	 given	 operational	meaning	 if	 these	 systems	were	 required	 to	 be	 able	 to



declare	 their	 own	 intents	 and	 communicate	 with	 humans	 about	 causes	 and
effects.

My	answer	to	the	fourth	question	is	also	yes,	based	on	the	answer	to	the
fifth.	 I	 believe	 that	 we	will	 be	 able	 to	make	machines	 that	 can	 distinguish
good	from	evil,	at	least	as	reliably	as	humans	and	hopefully	more	so.	The	first
requirement	 of	 a	moral	machine	 is	 the	 ability	 to	 reflect	 on	 its	 own	 actions,
which	 falls	under	counterfactual	 analysis.	Once	we	program	self-awareness,
however	 limited,	 empathy	 and	 fairness	 follow,	 for	 it	 is	 based	 on	 the	 same
computational	principles,	with	another	agent	added	to	the	equation.

There	is	a	big	difference	in	spirit	between	the	causal	approach	to	building
the	moral	robot	and	an	approach	that	has	been	studied	and	rehashed	over	and
over	 in	 science	 fiction	 since	 the	 1950s:	 Asimov’s	 laws	 of	 robotics.	 Isaac
Asimov	proposed	three	absolute	laws,	starting	with	“A	robot	may	not	injure	a
human	being	or,	through	inaction,	allow	a	human	being	to	come	to	harm.”	But
as	science	fiction	has	shown	over	and	over	again,	Asimov’s	laws	always	lead
to	 contradictions.	 To	 AI	 scientists,	 this	 comes	 as	 no	 surprise:	 rule-based
systems	never	turn	out	well.	But	it	does	not	follow	that	building	a	moral	robot
is	 impossible.	 It	 means	 that	 the	 approach	 cannot	 be	 prescriptive	 and	 rule
based.	 It	 means	 that	 we	 should	 equip	 thinking	 machines	 with	 the	 same
cognitive	abilities	that	we	have,	which	include	empathy,	long-term	prediction,
and	self-restraint,	and	then	allow	them	to	make	their	own	decisions.

Once	we	have	built	a	moral	robot,	many	apocalyptic	visions	start	to	recede
into	irrelevance.	There	is	no	reason	to	refrain	from	building	machines	that	are
better	 able	 to	 distinguish	 good	 from	 evil	 than	 we	 are,	 better	 able	 to	 resist
temptation,	better	able	to	assign	guilt	and	credit.	At	this	point,	like	chess	and
Go	players,	we	may	even	start	to	learn	from	our	own	creation.	We	will	be	able
to	 depend	 on	 our	 machines	 for	 a	 clear-eyed	 and	 causally	 sound	 sense	 of
justice.	We	will	be	able	 to	 learn	how	our	own	free	will	 software	works	and
how	it	manages	to	hide	its	secrets	from	us.	Such	a	thinking	machine	would	be
a	wonderful	companion	for	our	species	and	would	truly	qualify	as	AI’s	first
and	best	gift	to	humanity.
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NOTES

NOTES	TO	INTRODUCTION

Students	 are	 never	 allowed:	 With	 possibly	 one	 exception:	 if	 we	 have
performed	a	randomized	controlled	trial,	as	discussed	in	Chapter	4.	

NOTES	TO	CHAPTER	ONE
then	the	opposite	is	true:	In	other	words,	when	evaluating	an	intervention	in
a	 causal	 model,	 we	 make	 the	 minimum	 changes	 possible	 to	 enforce	 its
immediate	effect.	So	we	“break”	the	model	where	it	comes	to	A	but	not	B.

We	 should	 thank	 the	 language:	 I	 should	 also	 mention	 here	 that
counterfactuals	 allow	us	 to	 talk	 about	 causality	 in	 individual	 cases:	What
would	have	happened	 to	Mr.	Smith,	who	was	not	vaccinated	 and	died	of
smallpox,	 if	 he	 had	 been	 vaccinated?	 Such	 questions,	 the	 backbone	 of
personalized	medicine,	cannot	be	answered	from	rung-two	information.

Yet	we	can	answer:	To	be	more	precise,	 in	geometry,	undefined	 terms	 like
“point”	and	“line”	are	primitives.	The	primitive	 in	causal	 inference	 is	 the
relation	of	“listening	to,”	indicated	by	an	arrow.	

NOTES	TO	CHAPTER	TWO

And	 now	 the	 algebraic	magic:	 For	 anyone	 who	 takes	 the	 trouble	 to	 read
Wright’s	 paper,	 let	 me	 warn	 you	 that	 he	 does	 not	 compute	 his	 path
coefficients	 in	grams	per	day.	He	 computes	 them	 in	 “standard	units”	 and
then	converts	to	grams	per	day	at	the	end.	

NOTES	TO	CHAPTER	FIVE
“Cigarette	smoking	is	causally	related”:	The	evidence	for	women	was	less
clear	 at	 that	 time,	 primarily	 because	women	 had	 smoked	much	 less	 than
men	in	the	early	decades	of	the	century.	



NOTES	TO	CHAPTER	EIGHT
And	Abraham	drew	near:	As	before,	I	have	used	the	King	James	translation
but	made	small	changes	to	align	it	more	closely	with	the	Hebrew.

The	 ease	 and	 familiarity	 of	 such:	 The	 2013	 Joint	 Statistical	 Meetings
dedicated	a	whole	session	to	the	topic	“Causal	Inference	as	a	Missing	Data
Problem”—Rubin’s	 traditional	 mantra.	 One	 provocative	 paper	 at	 that
session	was	titled	“What	Is	Not	a	Missing	Data	Problem?”	This	title	sums
up	my	thoughts	precisely.

This	difference	in	commitment:	Readers	who	are	seeing	this	distinction	for
the	first	time	should	not	feel	alone;	there	are	well	over	100,000	regression
analysts	in	the	United	States	who	are	confused	by	this	very	issue,	together
with	most	 authors	 of	 statistical	 textbooks.	Things	will	 only	 change	when
readers	of	this	book	take	those	authors	to	task.

Unfortunately,	 Rubin	 does	 not	 consider:	 “Pearl’s	 work	 is	 clearly
interesting,	and	many	researchers	find	his	arguments	that	path	diagrams	are
a	 natural	 and	 convenient	 way	 to	 express	 assumptions	 about	 causal
structures	appealing.	 In	our	own	work,	perhaps	 influenced	by	 the	 type	of
examples	 arising	 in	 social	 and	medical	 sciences,	 we	 have	 not	 found	 this
approach	to	aid	the	drawing	of	causal	inferences”	(Imbens	and	Rubin	2013,
p.	25).

One	obstacle	I	faced	was	cyclic	models:	These	are	models	with	arrows	that
form	a	loop.	I	have	avoided	discussing	them	in	this	book,	but	such	models
are	quite	important	in	economics,	for	example.

Even	today	modern-day	economists:	Between	1995	and	1998,	 I	presented
the	following	toy	puzzle	to	hundreds	of	econometrics	students	and	faculty
across	the	United	States:

Consider	 the	 classical	 supply-and-demand	 equations	 that	 every	 economics
student	solves	in	Economics	101.

1.	 What	 is	 the	 expected	 value	 of	 the	 demand	Q	 if	 the	 price	 is
reported	to	be	P	=	p0?

2.	What	is	the	expected	value	of	the	demand	Q	if	the	price	is	set	to
P	=	p0?

3.	Given	that	the	current	price	is	P	=	p0,	what	would	the	expected
value	of	the	demand	Q	be	if	we	were	to	set	the	price	at	P	=	p1?



The	reader	should	recognize	these	queries	as	coming	from	the	three	levels
of	 the	 Ladder	 of	 Causation:	 predictions,	 actions,	 and	 counterfactuals.	 As	 I
expected,	 respondents	 had	 no	 trouble	 answering	 question	 1,	 one	 person	 (a
distinguished	professor)	was	able	to	solve	question	2,	and	nobody	managed	to
answer	question	3.

The	Model	Penal	Code	expresses:	This	is	a	set	of	standard	legal	principles
proposed	by	the	American	Law	Institute	in	1962	to	bring	uniformity	to	the
various	state	legal	codes.	It	does	not	have	full	legal	force	in	any	state,	but
according	to	Wikipedia,	as	of	2016,	more	than	two-thirds	of	the	states	have
enacted	parts	of	the	Model	Penal	Code.	

NOTES	TO	CHAPTER	NINE

Those	sailors	who	had	eaten:	The	reason	is	that	polar	bear	livers	do	contain
vitamin	C.

“On	the	Inadequacy	of	the	Partial”:	The	title	refers	to	partial	correlation,	a
standard	 method	 of	 controlling	 for	 a	 confounder	 that	 we	 discussed	 in
Chapter	7.

here	 is	 how	 to	 define	 the	 NIE:	 In	 the	 original	 delivery	 room,	 NIE	 was
expressed	using	nested	subscripts,	as	in	Y(0,M1).	I	hope	the	reader	will	find
the	 mixture	 of	 counterfactual	 subscripts	 and	 do-operators	 above	 more
transparent.

In	 that	 year	 researchers	 identified:	To	 be	 technically	 correct	 it	 should	 be
called	a	“single	nucleotide	polymorphism,”	or	SNP.	 It	 is	a	single	 letter	 in
the	genetic	code,	while	a	gene	is	more	like	a	word	or	a	sentence.	However,
in	order	not	to	burden	the	reader	with	unfamiliar	terminology,	I	will	simply
refer	to	it	as	a	gene.	
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CHAPTER	2.	FROM	BUCCANEERS	TO	GUINEA	PIGS:	THE
GENESIS	OF	CAUSAL	INFERENCE

Annotated	Bibliography
Galton’s	 explorations	of	 heredity	 and	 correlation	 are	 described	 in	 his	 books
(Galton,	1869,	1883,	1889)	and	are	also	documented	in	Stigler	(2012,	2016).

For	a	basic	introduction	to	the	Hardy-Weinberg	equilibrium,	see	Wikipedia
(2016a).	For	 the	origin	of	Galileo’s	quote	 “E	pur	 si	muove,”	 see	Wikipedia
(2016b).	The	story	of	the	Paris	catacombs	and	Pearson’s	shock	at	correlations
induced	by	“artificial	mixtures”	can	be	found	in	Stigler	(2012,	p.	9).

Because	Wright	lived	such	a	long	life,	he	had	the	rare	privilege	of	seeing	a
biography	 (Provine,	 1986)	 come	 out	 while	 he	 was	 still	 alive.	 Provine’s
biography	 is	 still	 the	 best	 place	 to	 learn	 about	 Wright’s	 career,	 and	 we
particularly	recommend	Chapter	5	on	path	analysis.	Crow’s	two	biographical
sketches	 (Crow,	 1982,	 1990)	 also	 provide	 a	 very	 useful	 biographical
perspective.	 Wright	 (1920)	 is	 the	 seminal	 paper	 on	 path	 diagrams;	 Wright
(1921)	 is	 a	 fuller	 exposition	 and	 the	 source	 for	 the	 guinea	 pig	 birth-weight
example.	 Wright	 (1983)	 is	 Wright’s	 response	 to	 Karlin’s	 critique,	 written
when	he	was	over	ninety	years	old.

The	 fate	 of	 path	 analysis	 in	 economics	 and	 social	 science	 is	 narrated	 in
Chapter	 5	 of	 Pearl	 (2000)	 and	 in	 Bollen	 and	 Pearl	 (2013).	 Blalock	 (1964),
Duncan	 (1966),	 and	 Goldberger	 (1972)	 introduced	Wright’s	 ideas	 to	 social
science	with	 great	 enthusiasm,	 but	 their	 theoretical	 underpinnings	were	 not
well	 articulated.	 A	 decade	 later,	 when	 Freedman	 (1987)	 challenged	 path
analysts	 to	 explain	 how	 interventions	 are	 modelled,	 the	 enthusiasm
disappeared,	and	leading	researchers	retreated	to	viewing	SEM	as	an	exercise



in	 statistical	 analysis.	 This	 revealing	 discussion	 among	 twelve	 scholars	 is
documented	 in	 the	 same	 issue	 of	 the	 Journal	 of	 Educational	 Statistics	 as
Freedman’s	article.

The	reluctance	of	economists	to	embrace	diagrams	and	structural	notation
is	 described	 in	 Pearl	 (2015).	 The	 painful	 consequences	 for	 economic
education	are	documented	in	Chen	and	Pearl	(2013).

A	popular	exposition	of	the	Bayesian-versus-frequentist	debate	is	given	in
McGrayne	(2011).

More	 technical	 discussions	 can	 be	 found	 in	 Efron	 (2013)	 and	 Lindley
(1987).
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CHAPTER	3.	FROM	EVIDENCE	TO	CAUSES:	REVEREND
BAYES	MEETS	MR.	HOLMES

Annotated	Bibliography
Elementary	introductions	to	Bayes’s	rule	and	Bayesian	thinking	can	be	found



in	 Lindley	 (2014)	 and	 Pearl,	 Glymour,	 and	 Jewell	 (2016).	 Debates	 with
competing	 representations	 of	 uncertainty	 are	 presented	 in	 Pearl	 (1988);	 see
also	the	extensive	list	of	references	given	there.

Our	mammogram	data	are	based	primarily	on	information	from	the	Breast
Cancer	Surveillance	Consortium	 (BCSC,	2009)	 and	US	Preventive	Services
Task	Force	(USPSTF,	2016)	and	are	presented	for	instructional	purposes	only.

“Bayesian	networks”	received	their	name	in	1985	(Pearl,	1985)	and	were
first	 presented	 as	 a	model	 of	 self-activated	memory.	Applications	 to	 expert
systems	 followed	 the	 development	 of	 belief	 updating	 algorithms	 for	 loopy
networks	(Pearl,	1986;	Lauritzen	and	Spiegelhalter,	1988).

The	concept	of	d-separation,	which	connects	path	blocking	in	a	diagram	to
dependencies	 in	 the	data,	has	 its	 roots	 in	 the	 theory	of	graphoids	 (Pearl	and
Paz,	1985).	The	 theory	unveils	 the	common	properties	of	graphs	 (hence	 the
name)	 and	 probabilities	 and	 explains	 why	 these	 two	 seemingly	 alien
mathematical	 objects	 can	 support	 one	 another	 in	 so	 many	 ways.	 See	 also
“Graphoid,”	Wikipedia.

The	 amusing	 example	 of	 the	 bag	 on	 the	 airline	 flight	 can	 be	 found	 in
Conrady	and	Jouffe	(2015,	Chapter	4).

The	Malaysia	Airlines	Flight	17	disaster	was	well	covered	 in	 the	media;
see	Clark	and	Kramer	(October	14,	2015)	for	an	update	on	the	investigation	a
year	 after	 the	 incident.	Wiegerinck,	 Burgers,	 and	 Kappen	 (2013)	 describes
how	 Bonaparte	 works.	 Further	 details	 on	 the	 identification	 of	 Flight	 17
victims,	 including	 the	 pedigree	 shown	 in	 Figure	 3.7,	 came	 from	 personal
correspondence	 from	W.	 Burgers	 to	 D.	 Mackenzie	 (August	 24,	 2016)	 and
from	 a	 phone	 interview	with	W.	 Burgers	 and	B.	Kappen	 by	D.	Mackenzie
(August	23,	2016).

The	complex	and	fascinating	story	of	 turbo	and	low-density	parity-check
codes	 has	 not	 been	 told	 in	 a	 truly	 layman-friendly	 form,	 but	 good	 starting
points	 are	 Costello	 and	 Forney	 (2007)	 and	 Hardesty	 (2010a,	 2010b).	 The
crucial	realization	that	turbo	codes	work	by	the	belief	propagation	algorithm
stems	from	McEliece,	David,	and	Cheng	(1998).

Efficient	codes	continue	to	be	a	battleground	for	wireless	communications;
Carlton	 (2016)	 takes	 a	 look	at	 the	current	 contenders	 for	 “5G”	phones	 (due
out	in	the	2020s).
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CHAPTER	4.	CONFOUNDING	AND	DECONFOUNDING:
OR,	SLAYING	THE	LURKING	VARIABLE

Annotated	Bibliography
The	story	of	Daniel	has	frequently	been	cited	as	the	first	controlled	trial;	see,
for	example,	Lilienfeld	(1982)	or	Stigler	(2016).	The	results	of	the	Honolulu
walking	study	were	reported	in	Hakim	(1998).

Fisher	 Box’s	 lengthy	 quote	 about	 “the	 skillful	 interrogation	 of	 Nature”
comes	 from	 her	 excellent	 biography	 of	 her	 father	 (Box,	 1978,	 Chapter	 6).
Fisher,	 too,	wrote	 about	 experiments	 as	 a	 dialogue	with	Nature;	 see	 Stigler
(2016).	Thus	I	believe	we	can	think	of	her	quote	as	nearly	coming	from	the
patriarch	himself,	only	more	beautifully	expressed.

It	 is	 fascinating	 to	 read	 Weinberg’s	 papers	 on	 confounding	 (Weinberg,
1993;	Howards	et	al.,	2012)	back-to-back.	They	are	like	two	snapshots	of	the
history	 of	 confounding,	 one	 taken	 just	 before	 causal	 diagrams	 became
widespread	 and	 the	 second	 taken	 twenty	 years	 later,	 revisiting	 the	 same
examples	using	causal	diagrams.	Forbes’s	complicated	diagram	of	the	causal



network	for	asthma	and	smoking	can	be	found	in	Williamson	et	al.	(2014).

Morabia’s	 “classic	 epidemiological	 definition	 of	 confounding”	 can	 be
found	in	Morabia	(2011).	The	quotes	from	David	Cox	come	from	Cox	(1992,
pp.	66–67).	Other	good	sources	on	the	history	of	confounding	are	Greenland
and	Robins	(2009)	and	Wikipedia	(2016).

The	back-door	criterion	for	eliminating	confounding	bias,	together	with	its
adjustment	 formula,	 were	 introduced	 in	 Pearl	 (1993).	 Its	 impact	 on
epidemiology	 can	 be	 seen	 through	 Greenland,	 Pearl,	 and	 Robins	 (1999).
Extensions	 to	 sequential	 interventions	 and	 other	 nuances	 are	 developed	 in
Pearl	(2000,	2009)	and	more	gently	described	in	Pearl,	Glymour,	and	Jewell
(2016).	Software	for	computing	causal	effects	using	do-calculus	 is	available
in	Tikka	and	Karvanen	(2017).

The	paper	by	Greenland	and	Robins	(1986)	was	revisited	by	the	authors	a
quarter	century	 later,	 in	 light	of	 the	extensive	developments	 since	 that	 time,
including	the	advent	of	causal	diagrams	(Greenland	and	Robins,	2009).
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CHAPTER	5.	THE	SMOKE-FILLED	DEBATE:	CLEARING
THE	AIR

Annotated	Bibliography
Two	book-length	studies,	Brandt	(2007)	and	Proctor	(2012a),	contain	all	 the
information	any	reader	could	ask	for	about	the	smoking–lung	cancer	debate,
short	of	reading	the	actual	tobacco	company	documents	(which	are	available
online).	 Shorter	 surveys	 of	 the	 smoking-cancer	 debate	 in	 the	 1950s	 are
Salsburg	 (2002,	 Chapter	 18),	 Parascandola	 (2004),	 and	 Proctor	 (2012b).
Stolley	(1991)	takes	a	look	at	the	unique	role	of	R.	A.	Fisher,	and	Greenhouse



(2009)	comments	on	Jerome	Cornfield’s	 importance.	The	shot	heard	around
the	world	was	Doll	and	Hill	 (1950),	which	 first	 implicated	smoking	 in	 lung
cancer;	though	technical,	it	is	a	scientific	classic.

For	the	story	of	the	surgeon	general’s	committee	and	the	emergence	of	the
Hill	guidelines	for	causation,	see	Blackburn	and	Labarthe	(2012)	and	Morabia
(2013).	Hill’s	own	description	of	his	criteria	can	be	found	in	Hill	(1965).

Lilienfeld	(2007)	is	the	source	of	the	“Abe	and	Yak”	story	with	which	we
began	the	chapter.

VanderWeele	 (2014)	 and	 Hernández-Díaz,	 Schisterman,	 and	 Hernán
(2006)	resolve	the	birth-weight	paradox	using	causal	diagrams.	An	interesting
“before-and-after”	pair	of	articles	is	Wilcox	(2001,	2006),	written	before	and
after	 the	 author	 learned	 about	 causal	 diagrams;	 his	 excitement	 in	 the	 latter
article	is	palpable.

Readers	 interested	 in	 the	 latest	 statistics	 and	 historical	 trends	 in	 cancer
mortality	 and	 smoking	 may	 consult	 US	 Department	 of	 Health	 and	 Human
Services	 (USDHHS,	 2014),	 American	 Cancer	 Society	 (2017),	 and	 Wingo
(2003).
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CHAPTER	6.	PARADOXES	GALORE!

Annotated	Bibliography
The	Monty	Hall	paradox	appears	 in	many	introductory	books	on	probability



theory	 (e.g.,	Grinstead	and	Snell,	 1998,	p.	136;	Lindley,	2014,	p.	201).	The
equivalent	“three	prisoners	dilemma”	was	used	to	demonstrate	the	inadequacy
of	non-Bayesian	approaches	in	Pearl	(1988,	pp.	58–62).

Tierney	(July	21,	1991)	and	Crockett	(2015)	tell	the	amazing	story	of	vos
Savant’s	 column	 on	 the	 Monty	 Hall	 paradox;	 Crockett	 gives	 several	 other
entertaining	 and	 embarrassing	 comments	 that	 vos	 Savant	 received	 from	 so-
called	experts.	Tierney’s	article	tells	what	Monty	Hall	himself	thought	of	the
fuss—an	interesting	human-interest	angle!

An	extensive	account	of	the	history	of	Simpson’s	paradox	is	given	in	Pearl
(2009,	 pp.	 174–182),	 including	 many	 attempts	 by	 statisticians	 and
philosophers	to	resolve	it	without	invoking	causation.	A	more	recent	account,
geared	for	educators,	is	given	in	Pearl	(2014).

Savage	 (2009),	 Julious	 and	 Mullee	 (1994),	 and	 Appleton,	 French,	 and
Vanderpump	(1996)	give	the	three	real-world	examples	of	Simpson’s	paradox
mentioned	 in	 the	 text	 (relating	 to	 baseball,	 kidney	 stones,	 and	 smoking,
respectively).

Savage’s	 sure-thing	principle	 (Savage,	 1954)	 is	 treated	 in	Pearl	 (2016b),
and	its	corrected	causal	version	is	derived	in	Pearl	(2009,	pp.	181–182).

Versions	of	Lord’s	paradox	(Lord,	1967)	are	described	in	Glymour	(2006);
Hernández-Díaz,	 Schisterman,	 and	 Hernán	 (2006);	 Senn	 (2006);	 Wainer
(1991).	A	comprehensive	analysis	can	be	found	in	Pearl	(2016a).

Paradoxes	invoking	counterfactuals	are	not	included	in	this	chapter	but	are
no	less	intriguing.	For	a	sample,	see	Pearl	(2013).
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CHAPTER	7.	BEYOND	ADJUSTMENT:	THE	CONQUEST



OF	MOUNT	INTERVENTION

Annotated	Bibliography
Extensions	of	the	back-door	and	front-door	adjustments	were	first	reported	in
Tian	and	Pearl	(2002)	based	on	Tian’s	c-component	factorization.	These	were
followed	 by	 Shpitser’s	 algorithmization	 of	 the	 do-calculus	 (Shpitser	 and
Pearl,	2006a)	and	then	the	completeness	results	of	Shpitser	and	Pearl	(2006b)
and	Huang	and	Valtorta	(2006).

The	economists	among	our	readers	should	note	that	the	cultural	resistance
of	some	economists	to	graphical	tools	of	analysis	(Heckman	and	Pinto,	2015;
Imbens	and	Rubin,	2015)	is	not	shared	by	all	economists.	White	and	Chalak
(2009),	 for	 example,	 have	 generalized	 and	 applied	 the	 do-calculus	 to
economic	 systems	 involving	 equilibrium	 and	 learning.	 Recent	 textbooks	 in
the	 social	 and	 behavioral	 sciences,	Morgan	 and	Winship	 (2007)	 and	 Kline
(2016),	 further	 signal	 to	 young	 researchers	 that	 cultural	 orthodoxy,	 like	 the
fear	 of	 telescopes	 in	 the	 seventeenth	 century,	 is	 not	 long	 lasting	 in	 the
sciences.

John	Snow’s	investigation	of	cholera	was	very	little	appreciated	during	his
lifetime,	 and	 his	 one-paragraph	 obituary	 in	Lancet	 did	 not	 even	mention	 it.
Remarkably,	the	premier	British	medical	journal	“corrected”	its	obituary	155
years	later	(Hempel,	2013).	For	more	biographical	material	on	Snow,	see	Hill
(1955)	and	Cameron	and	Jones	(1983).	Glynn	and	Kashin	(2018)	is	one	of	the
first	papers	to	demonstrate	empirically	that	front-door	adjustment	is	superior
to	back-door	adjustment	when	there	are	unobserved	confounders.	Freedman’s
critique	of	the	smoking–tar–lung	cancer	example	can	be	found	in	a	chapter	of
Freedman	(2010)	titled	“On	Specifying	Graphical	Models	for	Causation.”

Introductions	to	instrumental	variables	can	be	found	in	Greenland	(2000)
and	in	many	textbooks	of	econometrics	(e.g.,	Bowden	and	Turkington,	1984;
Wooldridge,	2013).

Generalized	 instrumental	 variables,	 extending	 the	 classical	 definition
given	in	our	text,	were	introduced	in	Brito	and	Pearl	(2002).

The	 program	 DAGitty	 (available	 online	 at
http://www.dagitty.net/dags.html)	 permits	 users	 to	 search	 the	 diagram	 for
generalized	instrumental	variables	and	reports	the	resulting	estimands	(Textor,
Hardt,	 and	 Knüppel,	 2011).	 Another	 diagram-based	 software	 package	 for
decision	making	is	BayesiaLab	(www.bayesia.com).

Bounds	on	instrumental	variable	estimates	are	studied	at	length	in	Chapter



8	 of	 Pearl	 (2009)	 and	 are	 applied	 to	 the	 problem	 of	 noncompliance.	 The
LATE	approximation	is	advocated	and	debated	in	Imbens	(2010).
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CHAPTER	8.	COUNTERFACTUALS:	MINING	WORLDS
THAT	COULD	HAVE	BEEN

Annotated	Bibliography
The	 definition	 of	 counterfactuals	 as	 derivatives	 of	 structural	 equations	 was
introduced	 by	 Balke	 and	 Pearl	 (1994a,	 1994b)	 and	 was	 used	 to	 estimate
probabilities	 of	 causation	 in	 legal	 settings.	 The	 relationships	 between	 this
framework	and	those	developed	by	Rubin	and	Lewis	are	discussed	at	 length
in	Pearl	(2000,	Chapter	7),	where	they	are	shown	to	be	logically	equivalent;	a
problem	solved	in	one	framework	would	yield	the	same	solution	in	another.

Recent	books	 in	 social	 science	 (e.g.,	Morgan	and	Winship,	2015)	and	 in
health	 science	 (e.g.,	 VanderWeele,	 2015)	 are	 taking	 the	 hybrid,	 graph-
counterfactual	approach	pursued	in	our	book.

The	 section	 on	 linear	 counterfactuals	 is	 based	 on	 Pearl	 (2009,	 pp.	 389–
391),	which	also	provides	the	solution	to	the	problem	posed	in	note	12.	Our
discussion	of	ETT	is	based	on	Shpitser	and	Pearl	(2009).

Legal	 questions	 of	 attribution,	 as	 well	 as	 probabilities	 of	 causation,	 are
discussed	 at	 length	 in	 Greenland	 (1999),	 who	 pioneered	 the	 counterfactual
approach	 to	 such	questions.	Our	 treatment	of	PN,	PS,	 and	PNS	 is	based	on
Tian	 and	 Pearl	 (2000)	 and	 Pearl	 (2009,	 Chapter	 9).	 A	 gentle	 approach	 to
counterfactual	attribution,	including	a	tool	kit	for	estimation,	is	given	in	Pearl,
Glymour,	 and	 Jewell	 (2016).	 An	 advanced	 formal	 treatment	 of	 actual
causation	can	be	found	in	Halpern	(2016).

Matching	 techniques	 for	 estimating	 causal	 effects	 are	 used	 routinely	 by
potential	outcome	researchers	(Sekhon,	2007),	though	they	usually	ignore	the
pitfalls	 shown	 in	 our	 education-experience-salary	 example.	 My	 realization
that	 missing-data	 problems	 should	 be	 viewed	 in	 the	 context	 of	 causal



modeling	was	formed	through	the	analysis	of	Mohan	and	Pearl	(2014).

Cowles	 (2016)	 and	 Reid	 (1998)	 tell	 the	 story	 of	 Neyman’s	 tumultuous
years	in	London,	including	the	anecdote	about	Fisher	and	the	wooden	models.
Greiner	(2008)	is	a	long	and	substantive	introduction	to	“but-for”	causation	in
the	law.	Allen	(2003),	Stott	et	al.	(2013),	Trenberth	(2012),	and	Hannart	et	al.
(2016)	address	the	problem	of	attribution	of	weather	events	to	climate	change,
and	 Hannart	 in	 particular	 invokes	 the	 ideas	 of	 necessary	 and	 sufficient
probability,	which	bring	more	clarity	to	the	subject.
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date	reference	is	VanderWeele	(2015);	MacKinnon	(2008)	also	contains	many
examples.	The	dramatic	transition	from	the	statistical	approach	of	Baron	and
Kenny	 (1986)	 to	 the	 counterfactual-based	 approach	 of	 causal	 mediation	 is
described	 in	 Pearl	 (2014)	 and	 Kline	 (2015).	McDonald’s	 quote	 (to	 discuss
mediation,	“start	from	scratch”)	is	taken	from	McDonald	(2001).

Natural	 direct	 and	 indirect	 effects	 were	 conceptualized	 in	 Robins	 and
Greenland	 (1992)	 and	deemed	problematic.	They	were	 later	 formalized	 and
legitimized	in	Pearl	(2001),	leading	to	the	Mediation	Formula.
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The	Mediation	Fallacy	and	the	fallacy	of	“conditioning”	on	a	mediator	are
demonstrated	in	Pearl	(1998)	and	Cole	and	Hernán	(2002).	Fisher’s	falling	for
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CHAPTER	10.	BIG	DATA,	ARTIFICIAL	INTELLIGENCE,
AND	THE	BIG	QUESTIONS

Annotated	Bibliography
An	accessible	source	for	the	perpetual	free	will	debate	is	Harris	(2012).	The
compatibilist	 school	 of	 philosophers	 is	 represented	 in	 the	 writings	 of



Mumford	and	Anjum	(2014)	and	Dennett	(2003).

Artificial	 intelligence	 conceptualizations	 of	 agency	 can	 be	 found	 in
Russell	 and	Norvig	 (2003)	 and	Wooldridge	 (2009).	 Philosophical	 views	 on
agency	are	compiled	 in	Bratman	 (2007).	An	 intent-based	 learning	system	 is
described	in	Forney	et	al.	(2017).

The	 twenty-three	 principles	 for	 “beneficial	 AI”	 agreed	 to	 at	 the	 2017
Asilomar	meeting	can	be	found	at	Future	of	Life	Institute	(2017).
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